{"title":"Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator","authors":"Kok-Meng Lee, D. K. Shah","doi":"10.1109/56.797","DOIUrl":null,"url":null,"abstract":"The dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator is presented. The equations of motion have been formulated in joint-space using the Lagrangian approach. The analysis provides the solution to predict the forces required to actuate the links so that the manipulator follows a predetermined trajectory. A dynamic simulation program illustrates the influence of the link dynamics on the actuating force required. An example of tracing a helical path is chosen to illustrate the dynamic simulation and to show that the Cartesian position of the moving platform may be controlled at a sacrifice of orientation freedoms. The dynamic analysis provides a basis for future theoretical research to develop the control scheme, for experimental research to estimate the inertia parameters, and for design optimization of the prototype manipulator. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"395","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 395
Abstract
The dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator is presented. The equations of motion have been formulated in joint-space using the Lagrangian approach. The analysis provides the solution to predict the forces required to actuate the links so that the manipulator follows a predetermined trajectory. A dynamic simulation program illustrates the influence of the link dynamics on the actuating force required. An example of tracing a helical path is chosen to illustrate the dynamic simulation and to show that the Cartesian position of the moving platform may be controlled at a sacrifice of orientation freedoms. The dynamic analysis provides a basis for future theoretical research to develop the control scheme, for experimental research to estimate the inertia parameters, and for design optimization of the prototype manipulator. >