{"title":"Robot calibration and compensation","authors":"W. K. Veitschegger, Chi-haur Wu","doi":"10.1109/56.9302","DOIUrl":null,"url":null,"abstract":"A method is presented for calibrating and compensating for the kinematic errors in robot manipulators. A method of selecting a set of independent kinematic errors for modeling any geometric errors in a manipulator's structure is developed. A calibration algorithm is presented for finding the values of these kinematic errors by measuring the end-effector position. These kinematic errors are experimentally determined for a PUMA 560 six-joint manipulator. Two general-purpose compensation algorithms are developed and the improvement in the Cartesian position of the end-effector is experimentally measured and these results are presented. The results show that the positioning accuracy of a robot manipulator can be substantially improved using a relatively simple technique for measuring the Cartesian position of a tool attached to the end of the manipulator. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.9302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 143
Abstract
A method is presented for calibrating and compensating for the kinematic errors in robot manipulators. A method of selecting a set of independent kinematic errors for modeling any geometric errors in a manipulator's structure is developed. A calibration algorithm is presented for finding the values of these kinematic errors by measuring the end-effector position. These kinematic errors are experimentally determined for a PUMA 560 six-joint manipulator. Two general-purpose compensation algorithms are developed and the improvement in the Cartesian position of the end-effector is experimentally measured and these results are presented. The results show that the positioning accuracy of a robot manipulator can be substantially improved using a relatively simple technique for measuring the Cartesian position of a tool attached to the end of the manipulator. >