Continuous sign language recognition based on 3DCNN and BLSTM

Hengbo Zhang, Daming Liu, Nana Fu
{"title":"Continuous sign language recognition based on 3DCNN and BLSTM","authors":"Hengbo Zhang, Daming Liu, Nana Fu","doi":"10.1117/12.2667649","DOIUrl":null,"url":null,"abstract":"Sign language recognition can make the communication between deaf mutes and healthy people more convenient and fast. In recent years, with the continuous development of deep learning, the research method of deep learning has also been introduced into the field of sign language recognition. Compared with the recognition of isolated words, the recognition of continuous sign language is more time-dependent. The current research still has shortcomings in recognition accuracy. Therefore, we proposed a continuous sign language recognition method based on 3DCNN and BLSTM. Based on the spatial feature information extracted by 3DCNN and the short-term temporal relationship established, the global temporal modeling of the video information of continuous sign language is carried out by using the bidirectional semantic mining ability of BLSTM. The CTC loss function is constructed to solve the problem of time series label misalignment. At the same time, we add the calculation of auxiliary loss function and auxiliary classifier. Experiments show that the auxiliary loss function and classifier can effectively reduce the error rate of the network. The word error rate of the continuous sign language recognition algorithm proposed in this paper on the large continuous sign language dataset RWTH-PHONEIX-Weather 2014 is as low as 23.5%, which is lower than the previous algorithm.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sign language recognition can make the communication between deaf mutes and healthy people more convenient and fast. In recent years, with the continuous development of deep learning, the research method of deep learning has also been introduced into the field of sign language recognition. Compared with the recognition of isolated words, the recognition of continuous sign language is more time-dependent. The current research still has shortcomings in recognition accuracy. Therefore, we proposed a continuous sign language recognition method based on 3DCNN and BLSTM. Based on the spatial feature information extracted by 3DCNN and the short-term temporal relationship established, the global temporal modeling of the video information of continuous sign language is carried out by using the bidirectional semantic mining ability of BLSTM. The CTC loss function is constructed to solve the problem of time series label misalignment. At the same time, we add the calculation of auxiliary loss function and auxiliary classifier. Experiments show that the auxiliary loss function and classifier can effectively reduce the error rate of the network. The word error rate of the continuous sign language recognition algorithm proposed in this paper on the large continuous sign language dataset RWTH-PHONEIX-Weather 2014 is as low as 23.5%, which is lower than the previous algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于3DCNN和BLSTM的连续手语识别
手语识别可以使聋哑人与健康人之间的交流更加方便快捷。近年来,随着深度学习的不断发展,深度学习的研究方法也被引入到手语识别领域。与孤立词的识别相比,连续手语的识别更具有时间依赖性。目前的研究在识别精度上还存在不足。因此,我们提出了一种基于3DCNN和BLSTM的连续手语识别方法。基于3DCNN提取的空间特征信息和建立的短期时间关系,利用BLSTM的双向语义挖掘能力,对连续手语视频信息进行全局时间建模。为了解决时间序列标签错位问题,构造了CTC损失函数。同时增加了辅助损失函数和辅助分类器的计算。实验表明,辅助损失函数和分类器可以有效地降低网络的错误率。本文提出的连续手语识别算法在RWTH-PHONEIX-Weather 2014大型连续手语数据集上的单词错误率低至23.5%,低于之前的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and application of rhythmic gymnastics auxiliary training system based on Kinect Long-term stock price forecast based on PSO-informer model Research on numerical simulation of deep seabed blowout and oil spill range FL-Lightgbm prediction method of unbalanced small sample anti-breast cancer drugs Learning anisotropy and asymmetry geometric features for medical image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1