The need for communications to enable DC power to be successful

B. Nordman, Kenneth J. Christensen
{"title":"The need for communications to enable DC power to be successful","authors":"B. Nordman, Kenneth J. Christensen","doi":"10.1109/ICDCM.2015.7152019","DOIUrl":null,"url":null,"abstract":"Alternating Current (AC) is the most common form of power available within buildings. This has historical reasons rooted in large-scale utility generation and distribution of power. With the rapid emergence of local renewables (notably solar) in buildings, the availability of Direct Current (DC) power is becoming more prevalent. In this position paper, we argue that managed power distribution of DC is possible with the addition of communications about power. We claim that with communications DC power distribution becomes much more efficient and effective than with no communication, and provides other benefits. The Local Power Distribution (LPD) model is described where commodity interfaces enable a “plug and play” approach to operating DC power sources, batteries, and loads within a building. We seek a future where communications coupled with DC power distribution, storage, and use can create buildings that are more efficient and easier to operate.","PeriodicalId":110320,"journal":{"name":"2015 IEEE First International Conference on DC Microgrids (ICDCM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE First International Conference on DC Microgrids (ICDCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCM.2015.7152019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Alternating Current (AC) is the most common form of power available within buildings. This has historical reasons rooted in large-scale utility generation and distribution of power. With the rapid emergence of local renewables (notably solar) in buildings, the availability of Direct Current (DC) power is becoming more prevalent. In this position paper, we argue that managed power distribution of DC is possible with the addition of communications about power. We claim that with communications DC power distribution becomes much more efficient and effective than with no communication, and provides other benefits. The Local Power Distribution (LPD) model is described where commodity interfaces enable a “plug and play” approach to operating DC power sources, batteries, and loads within a building. We seek a future where communications coupled with DC power distribution, storage, and use can create buildings that are more efficient and easier to operate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需要通信才能使直流电源成功
交流电(AC)是建筑物内最常见的电力形式。这有历史原因,根源于大规模的公用事业发电和配电。随着当地可再生能源(特别是太阳能)在建筑物中的迅速出现,直流(DC)电源的可用性变得越来越普遍。在这篇立场论文中,我们认为通过增加关于电源的通信,可以实现直流电源的管理配电。我们声称,与没有通信相比,有通信的直流配电变得更加高效和有效,并提供其他好处。描述了本地配电(LPD)模型,其中商品接口支持“即插即用”方法来操作建筑物内的直流电源、电池和负载。我们寻求的未来是,通信与直流配电、存储和使用相结合,可以创造出更高效、更容易操作的建筑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supercapacitor-based DC-DC converter technique for DC-microgrids with UPS capability Modelling and measuring complex impedances of power electronic converters for stability assessment of low-voltage DC-grids Two-level control for fast electrical vehicle charging stations with multi flywheel energy storage system Technological and deployment challenges and user-response to uninterrupted DC (UDC) deployment in Indian homes Analysis of emerging technology for DC-enabled smart homes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1