Rectangular Spraying Task Assignment Via a Genetic Algorithm

Ding Yan, Jiajian He, Shuchen He, Yang Chen
{"title":"Rectangular Spraying Task Assignment Via a Genetic Algorithm","authors":"Ding Yan, Jiajian He, Shuchen He, Yang Chen","doi":"10.1109/CACRE58689.2023.10209036","DOIUrl":null,"url":null,"abstract":"This paper deals with the assignment problem of multiple robot with the rectangular spaying tasks. Without pointing to the starting points of each task, the upper left vertex, the upper right vertex, the lower left vertex and the lower right vertex are selected by the genetic algorithm. The ergodic-based genetic algorithm is designed to achieve the shortest time and the lowest path cost. The improved mutation operator is set to accelerate the convergence process and improve the practicability of the proposed algorithm. Compared with the strategy of market-based algorithm, the genetic algorithm reduces the average time cost by 16.98% and distance costs by 9.05%, respectively.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10209036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the assignment problem of multiple robot with the rectangular spaying tasks. Without pointing to the starting points of each task, the upper left vertex, the upper right vertex, the lower left vertex and the lower right vertex are selected by the genetic algorithm. The ergodic-based genetic algorithm is designed to achieve the shortest time and the lowest path cost. The improved mutation operator is set to accelerate the convergence process and improve the practicability of the proposed algorithm. Compared with the strategy of market-based algorithm, the genetic algorithm reduces the average time cost by 16.98% and distance costs by 9.05%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的矩形喷涂任务分配
研究了具有矩形喷涂任务的多机器人分配问题。在不指向每个任务起始点的情况下,通过遗传算法选择左上顶点、右上顶点、左下顶点和右下顶点。基于遍历的遗传算法旨在实现最短的时间和最低的路径成本。引入改进的变异算子,加快了算法的收敛速度,提高了算法的实用性。与基于市场算法的策略相比,遗传算法的平均时间成本和距离成本分别降低了16.98%和9.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continual Contrastive Anomaly Detection under Natural Data Distribution Shifts Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions An Integrated Calibration Scheme for Attitude Benchmark of Micro-nano Satellites and Its Experiments Based on In-Orbit Data Developing an Untethered Soft Robot for Finger Rehabilitation 3D Scanning Vision System Design and Implementation in Large Shipbuilding Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1