Usando regras de associação para a identificação de falhas conceituais

R. R. Boguski, D. Cury
{"title":"Usando regras de associação para a identificação de falhas conceituais","authors":"R. R. Boguski, D. Cury","doi":"10.5753/cbie.sbie.2018.1443","DOIUrl":null,"url":null,"abstract":"Offer adapted teaching to the cognitive profile of the apprentice is a task that still unresolved in your completeness. In this paper is presented a strategy for getting the concepts not assimilated by a group of students in a learning event, using for this, association rules of data mining applied to conceptual maps. Resumo. Oferecer ensino adaptado ao perfil cognitivo do aprendiz é uma tarefa ainda não resolvida em sua completude. Neste artigo é apresentada uma estratégia para obtenção dos conceitos não assimilados por um grupo de estudantes num evento de aprendizagem, utilizando para isto, regras de associação da mineração de dados aplicadas à mapas conceituais. 1. Introdução Oferecer ensino adaptado ao perfil cognitivo do aprendiz é uma tarefa ainda não resolvida em sua completude, apesar de diferentes técnicas já haverem sido utilizadas. Visando preencher essa lacuna, utilizou-se como técnica as regras de associação da mineração de dados, adaptada ao contexto de mapas conceituais para obtenção do conjunto de conceitos não assimilados por um grupo de aprendizes. A intenção é que, posteriormente, esses conceitos sejam trabalhados de modo a nivelar o aprendizado coletivo, sem comprometer ou prejudicar a particularidade de cada aluno. A mineração de dados é o processo de análise de conjuntos de dados que podem ser originados de diferentes fontes e tem por objetivo a descoberta de padrões interessantes que possam representar informações úteis, utilizando para isso diferentes técnicas. Ela não é um conceito essencialmente novo, entretanto, devido ao avanço da tecnologia relacionada ao processamento de informação, tornou-se ainda mais evidente nas últimas décadas pela diversidade de sua aplicação em atividades diárias. Esse conceito, pelo fato de ser interdisciplinar e não se restringir a uma única área, está presente em diversos contextos com diferentes aplicações. Segundo [Han, Kamber & Pei 2011], a mineração de dados é parte do processo de descoberta de conhecimento que contempla uma sequência iterativa dos passos de limpeza de dados, integração de dados, seleção de dados, transformação de dados, a própria mineração de dados, avaliação de padrões e apresentação do conhecimento. Nesse contexto, dispõe-se de algumas técnicas, [Han, Kamber & Pei 2011] e [Amo 2004] que podem ser usadas de acordo com a finalidade, tais como associações, predições, regressões, clusterizações e suas variações. DOI: 10.5753/cbie.sbie.2018.1443 1443 Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018) VII Congresso Brasileiro de Informática na Educação (CBIE 2018)","PeriodicalId":231173,"journal":{"name":"Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/cbie.sbie.2018.1443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Offer adapted teaching to the cognitive profile of the apprentice is a task that still unresolved in your completeness. In this paper is presented a strategy for getting the concepts not assimilated by a group of students in a learning event, using for this, association rules of data mining applied to conceptual maps. Resumo. Oferecer ensino adaptado ao perfil cognitivo do aprendiz é uma tarefa ainda não resolvida em sua completude. Neste artigo é apresentada uma estratégia para obtenção dos conceitos não assimilados por um grupo de estudantes num evento de aprendizagem, utilizando para isto, regras de associação da mineração de dados aplicadas à mapas conceituais. 1. Introdução Oferecer ensino adaptado ao perfil cognitivo do aprendiz é uma tarefa ainda não resolvida em sua completude, apesar de diferentes técnicas já haverem sido utilizadas. Visando preencher essa lacuna, utilizou-se como técnica as regras de associação da mineração de dados, adaptada ao contexto de mapas conceituais para obtenção do conjunto de conceitos não assimilados por um grupo de aprendizes. A intenção é que, posteriormente, esses conceitos sejam trabalhados de modo a nivelar o aprendizado coletivo, sem comprometer ou prejudicar a particularidade de cada aluno. A mineração de dados é o processo de análise de conjuntos de dados que podem ser originados de diferentes fontes e tem por objetivo a descoberta de padrões interessantes que possam representar informações úteis, utilizando para isso diferentes técnicas. Ela não é um conceito essencialmente novo, entretanto, devido ao avanço da tecnologia relacionada ao processamento de informação, tornou-se ainda mais evidente nas últimas décadas pela diversidade de sua aplicação em atividades diárias. Esse conceito, pelo fato de ser interdisciplinar e não se restringir a uma única área, está presente em diversos contextos com diferentes aplicações. Segundo [Han, Kamber & Pei 2011], a mineração de dados é parte do processo de descoberta de conhecimento que contempla uma sequência iterativa dos passos de limpeza de dados, integração de dados, seleção de dados, transformação de dados, a própria mineração de dados, avaliação de padrões e apresentação do conhecimento. Nesse contexto, dispõe-se de algumas técnicas, [Han, Kamber & Pei 2011] e [Amo 2004] que podem ser usadas de acordo com a finalidade, tais como associações, predições, regressões, clusterizações e suas variações. DOI: 10.5753/cbie.sbie.2018.1443 1443 Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018) VII Congresso Brasileiro de Informática na Educação (CBIE 2018)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用关联规则识别概念缺陷
提供把教学的认知形象学徒的任务还unresolved在你的完整性。本文提出了一种策略,通过将数据挖掘规则应用于概念图,使概念不被一组学生在学习事件中吸收。总结。提供适应学习者认知状况的教学是一项尚未完全解决的任务。本文提出了一种策略,利用数据挖掘关联规则应用于概念图,在学习事件中获取未被一组学生吸收的概念。1. 尽管已经使用了不同的技术,但提供适应学习者认知状况的教学是一项尚未完全解决的任务。为了填补这一空白,我们使用了数据挖掘的关联规则作为一种技术,适应于概念图的上下文,以获得一组学习者没有吸收的概念。这样做的目的是,在不损害或损害每个学生的特殊性的情况下,这些概念将以一种平衡集体学习的方式加以发展。数据挖掘是对可能来自不同来源的数据集进行分析的过程,其目的是使用不同的技术发现可能代表有用信息的有趣模式。它本质上并不是一个新概念,然而,由于与信息处理相关的技术进步,在过去几十年里,它在日常活动中的应用多样性变得更加明显。这个概念,因为它是跨学科的,不局限于一个单一的领域,出现在不同的环境和不同的应用。根据[Han, Kamber & Pei 2011],数据挖掘是知识发现过程的一部分,包括数据清理、数据集成、数据选择、数据转换、数据挖掘本身、模式评估和知识呈现等步骤的迭代序列。在这种情况下,我们有一些技术,[Han, Kamber & Pei 2011]和[Amo 2004],可以根据目的使用,如关联、预测、回归、聚类及其变化。DOI: 10.5753/ CBIE . SBIE .2018.1443 1443第29届巴西教育信息学研讨会(SBIE 2018)第七届巴西教育信息学大会(CBIE 2018)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Criança Protegida: um jogo para prevenir a violência sexual contra crianças Ensinando com jogos ou jogando com o ensino: a visão da comunidade brasileira de Informática na Educação sobre jogos no ensino de matemática Inferência de Conhecimento a Partir da Detecção Automática de Evidências no Domínio da Programação de Computadores Ensino de Algoritmos e Lógica de Programação para os Diferentes Cursos: Um Mapeamento Sistemático da Literatura Identificação do Estilo de Aprendizagem utilizando o Modelo LV como auxílio para personalização de Sistemas Tutores Inteligentes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1