A Noise Robust Front-end for Speech Recognition Using Hough Transform and Cumulative Distribution Mapping

E. Choi
{"title":"A Noise Robust Front-end for Speech Recognition Using Hough Transform and Cumulative Distribution Mapping","authors":"E. Choi","doi":"10.1109/ICPR.2006.128","DOIUrl":null,"url":null,"abstract":"This paper describes a novel and noise robust front-end that employs the use of Hough transform for simultaneous frequency and temporal masking, together with cumulative distribution mapping of cepstral coefficients, for noisy speech recognition. Recognition experiments on the Aurora II connected digits database have revealed that the proposed front-end achieves an average digit recognition accuracy of 83.67%. Compared with the recognition results obtained by using the ETSI standard Mel-cepstral front-end, this accuracy represents a relative error rate reduction of around 58%","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes a novel and noise robust front-end that employs the use of Hough transform for simultaneous frequency and temporal masking, together with cumulative distribution mapping of cepstral coefficients, for noisy speech recognition. Recognition experiments on the Aurora II connected digits database have revealed that the proposed front-end achieves an average digit recognition accuracy of 83.67%. Compared with the recognition results obtained by using the ETSI standard Mel-cepstral front-end, this accuracy represents a relative error rate reduction of around 58%
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hough变换和累积分布映射的语音识别噪声鲁棒前端
本文描述了一种新颖的噪声鲁棒前端,该前端采用霍夫变换同时进行频率和时间掩蔽,以及倒谱系数的累积分布映射,用于噪声语音识别。在Aurora II连接数字数据库上的识别实验表明,该前端的平均数字识别准确率为83.67%。与使用ETSI标准mel -倒谱前端获得的识别结果相比,该精度代表了大约58%的相对错误率降低
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1