ThinICA-CSP algorithm for discrimination of multiclass motor imagery movements

Deepa Beeta Thiyam, S. Cruces, R. E.R.
{"title":"ThinICA-CSP algorithm for discrimination of multiclass motor imagery movements","authors":"Deepa Beeta Thiyam, S. Cruces, R. E.R.","doi":"10.1109/TENCON.2016.7848480","DOIUrl":null,"url":null,"abstract":"This paper presents a ThinICA-CSP1 algorithm for discrimination of multiclass motor imagery (MI) movements for Brain Computer Interfacing (BCI) applications. This algorithm performs a joint approximate diagonalization of the second and higher order statistics of the observations with the aim of identifying the relevant independent components of the EEG signals and their corresponding spatial filters. In order to speed up the convergence, the algorithm is initialized from the multiclass Common Spatial Pattern (CSP) filter matrix. This helps the ICA algorithm to find the closest solution to the problem. The algorithm was tested on BCI competition IV dataset 2a and the obtained performance was compared with two existing methods. An improvement in classification performance is observed using the ThinICA-CSP algorithm.","PeriodicalId":246458,"journal":{"name":"2016 IEEE Region 10 Conference (TENCON)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2016.7848480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a ThinICA-CSP1 algorithm for discrimination of multiclass motor imagery (MI) movements for Brain Computer Interfacing (BCI) applications. This algorithm performs a joint approximate diagonalization of the second and higher order statistics of the observations with the aim of identifying the relevant independent components of the EEG signals and their corresponding spatial filters. In order to speed up the convergence, the algorithm is initialized from the multiclass Common Spatial Pattern (CSP) filter matrix. This helps the ICA algorithm to find the closest solution to the problem. The algorithm was tested on BCI competition IV dataset 2a and the obtained performance was compared with two existing methods. An improvement in classification performance is observed using the ThinICA-CSP algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多类运动意象运动的ThinICA-CSP识别算法
本文提出了一种用于脑机接口(BCI)应用的多类运动图像(MI)识别的ThinICA-CSP1算法。该算法对观测值的二阶统计量和高阶统计量进行联合近似对角化,目的是识别脑电信号的相关独立分量及其相应的空间滤波器。为了加快收敛速度,该算法从多类公共空间模式(CSP)滤波矩阵初始化。这有助于ICA算法找到最接近问题的解。在BCI competition IV数据集2a上对该算法进行了测试,并与已有的两种方法进行了性能比较。使用ThinICA-CSP算法可以提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D printing of a pavlova Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index GaN based μLED drive circuit for Visible Light Communication (VLC) with improved linearity using on-chip optical feedback Automatic image classification in intravascular optical coherence tomography images A rapid and reliable approach for optimal design of an electromagnetic nanopositioning actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1