{"title":"Enhancing real-time schedules to tolerate transient faults","authors":"Sunondo Ghosh, R. Melhem, D. Mossé","doi":"10.1109/REAL.1995.495202","DOIUrl":null,"url":null,"abstract":"We present a scheme to guarantee that the execution of real-time tasks can tolerate transient and intermittent faults assuming any queue-based scheduling technique. The scheme is based on reserving sufficient slack: in a schedule such that a task can be re-executed before its deadline without compromising guarantees given to other tasks. Only enough slack is reserved in the schedule to guarantee fault tolerance if at most one fault occurs within a time interval. This results in increased schedulability and a very low percentage of deadline misses even if no restriction is placed on the fault separation. We provide two algorithms to solve the problem of adding fault tolerance to a queue of real-time tasks. The first is a dynamic programming optimal solution and the second is a greedy heuristic which closely approximates the optimal.","PeriodicalId":231426,"journal":{"name":"Proceedings 16th IEEE Real-Time Systems Symposium","volume":"T164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REAL.1995.495202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
We present a scheme to guarantee that the execution of real-time tasks can tolerate transient and intermittent faults assuming any queue-based scheduling technique. The scheme is based on reserving sufficient slack: in a schedule such that a task can be re-executed before its deadline without compromising guarantees given to other tasks. Only enough slack is reserved in the schedule to guarantee fault tolerance if at most one fault occurs within a time interval. This results in increased schedulability and a very low percentage of deadline misses even if no restriction is placed on the fault separation. We provide two algorithms to solve the problem of adding fault tolerance to a queue of real-time tasks. The first is a dynamic programming optimal solution and the second is a greedy heuristic which closely approximates the optimal.