Bangla Text Sentiment Analysis Using Supervised Machine Learning with Extended Lexicon Dictionary

Nitish Ranjan Bhowmik, M. Arifuzzaman, M. Mondal, Md. Saiful Islam
{"title":"Bangla Text Sentiment Analysis Using Supervised Machine Learning with Extended Lexicon Dictionary","authors":"Nitish Ranjan Bhowmik, M. Arifuzzaman, M. Mondal, Md. Saiful Islam","doi":"10.2991/NLPR.D.210316.001","DOIUrl":null,"url":null,"abstract":"WiththeproliferationoftheInternet’ssocialdigitalcontent,sentimentanalysis(SA)hasgainedawideresearchinterestinnatural language processing (NLP). A few significant research has been done in Bangla language domain because of having intricate grammatical structure on text. This paper focuses on SA in the context of Bangla language. Firstly, a specific domain-based categorical weighted lexicon data dictionary (LDD) is developed for analyzing sentiments in Bangla. This LDD is developed by applying the concepts of normalization, tokenization, and stemming to two Bangla datasets available in GitHub repository. Secondly, a novel rule–based algorithm termed as Bangla Text Sentiment Score (BTSC) is developed for detecting sentence polarity. This algorithm considers parts of speech tagger words and special characters to generate a score of a word and thus that ofasentenceandablog.TheBTSCalgorithmalongwiththeLDDisappliedtoextractsentimentsbygeneratingscoresofthetwoBangladatasets.Thirdly,twofeaturematricesaredevelopedbyapplyingtermfrequency-inversedocumentfrequency(tf-idf)to thetwodatasets,andbyusingthecorrespondingBTSCscores.Next,supervisedmachinelearningclassifiersareappliedtothefeaturematrices","PeriodicalId":332352,"journal":{"name":"Natural Language Processing Research","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/NLPR.D.210316.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

WiththeproliferationoftheInternet’ssocialdigitalcontent,sentimentanalysis(SA)hasgainedawideresearchinterestinnatural language processing (NLP). A few significant research has been done in Bangla language domain because of having intricate grammatical structure on text. This paper focuses on SA in the context of Bangla language. Firstly, a specific domain-based categorical weighted lexicon data dictionary (LDD) is developed for analyzing sentiments in Bangla. This LDD is developed by applying the concepts of normalization, tokenization, and stemming to two Bangla datasets available in GitHub repository. Secondly, a novel rule–based algorithm termed as Bangla Text Sentiment Score (BTSC) is developed for detecting sentence polarity. This algorithm considers parts of speech tagger words and special characters to generate a score of a word and thus that ofasentenceandablog.TheBTSCalgorithmalongwiththeLDDisappliedtoextractsentimentsbygeneratingscoresofthetwoBangladatasets.Thirdly,twofeaturematricesaredevelopedbyapplyingtermfrequency-inversedocumentfrequency(tf-idf)to thetwodatasets,andbyusingthecorrespondingBTSCscores.Next,supervisedmachinelearningclassifiersareappliedtothefeaturematrices
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展词典的监督式机器学习孟加拉语文本情感分析
随着互联网社交数字内容的激增,情感分析(SA)在自然语言处理(NLP)领域得到了广泛的研究。由于孟加拉语语篇语法结构复杂,因此在孟加拉语领域的研究很少。本文主要研究孟加拉语语境下的SA。首先,开发了一个基于特定领域的分类加权词汇数据字典(LDD),用于分析孟加拉语的情感。这个LDD是通过将规范化、标记化和词干提取的概念应用于GitHub存储库中的两个孟加拉语数据集来开发的。其次,提出了一种基于规则的孟加拉语文本情感评分(BTSC)算法来检测句子极性。该算法考虑词性、标注词和特殊字符来生成词的分数,从而生成句子和日志的分数。btscc算法与ddisc算法一起通过生成两个数据集的分数来提取情感。第三,通过对两个数据集应用术语频率-逆文档频率(tf-idf),并使用相应的btscc分数来开发两个特征矩阵。接下来,supervisedmachinelearningclassifiersareappliedtothefeaturematrices
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Dialogue Generation Methods in Open Domain: A Survey Bangla Text Sentiment Analysis Using Supervised Machine Learning with Extended Lexicon Dictionary Motivations, Methods and Metrics of Misinformation Detection: An NLP Perspective NLPR Journal Re-Launched
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1