Shang-Ming Zhou, R. John, F. Chiclana, J. Garibaldi
{"title":"New Type-2 Rule Ranking Indices for Designing Parsimonious Interval Type-2 Fuzzy Logic Systems","authors":"Shang-Ming Zhou, R. John, F. Chiclana, J. Garibaldi","doi":"10.1109/FUZZY.2007.4295477","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two novel indices for type-2 fuzzy rule ranking to identify the most influential fuzzy rules in designing type-2 fuzzy logic systems, and name them as R-values and c-values of fuzzy rules separately. The R-values of type-2 fuzzy rules are obtained by applying QR decomposition in which there is no need to estimate a rank as required in the SVD-QR with column pivoting algorithm. The c-values of type-2 fuzzy rules are suggested to rank rules based on the effects of rule consequents. Experimental results on a signal recovery problem have shown that by using the proposed indices the most influential type-2 fuzzy rules can be effectively selected to construct parsimonious type-2 fuzzy models while the system performances are kept at a satisfied level.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we propose two novel indices for type-2 fuzzy rule ranking to identify the most influential fuzzy rules in designing type-2 fuzzy logic systems, and name them as R-values and c-values of fuzzy rules separately. The R-values of type-2 fuzzy rules are obtained by applying QR decomposition in which there is no need to estimate a rank as required in the SVD-QR with column pivoting algorithm. The c-values of type-2 fuzzy rules are suggested to rank rules based on the effects of rule consequents. Experimental results on a signal recovery problem have shown that by using the proposed indices the most influential type-2 fuzzy rules can be effectively selected to construct parsimonious type-2 fuzzy models while the system performances are kept at a satisfied level.