Optimizing Facial Expressions of an Android Robot Effectively: a Bayesian Optimization Approach

Dongsheng Yang, Wataru Sato, Qianying Liu, T. Minato, Shushi Namba, Shin’ya Nishida
{"title":"Optimizing Facial Expressions of an Android Robot Effectively: a Bayesian Optimization Approach","authors":"Dongsheng Yang, Wataru Sato, Qianying Liu, T. Minato, Shushi Namba, Shin’ya Nishida","doi":"10.1109/Humanoids53995.2022.10000154","DOIUrl":null,"url":null,"abstract":"Expressing various facial emotions is an important social ability for efficient communication between humans. A key challenge in human-robot interaction research is providing androids with the ability to make various human-like facial expressions for efficient communication with humans. The android Nikola, we have developed, is equipped with many actuators for facial muscle control. While this enables Nikola to simulate various human expressions, it also complicates identification of the optimal parameters for producing desired expressions. Here, we propose a novel method that automati-cally optimizes the facial expressions of our android. We use a machine vision algorithm to evaluate the magnitudes of seven basic emotions, and employ the Bayesian Optimization algorithm to identify the parameters that produce the most convincing facial expressions. Evaluations by naïve human participants demonstrate that our method improves the rated strength of the android's facial expressions of anger, disgust, sadness, and surprise compared with the previous method that relied on Ekman's theory and parameter adjustments by a human expert.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Expressing various facial emotions is an important social ability for efficient communication between humans. A key challenge in human-robot interaction research is providing androids with the ability to make various human-like facial expressions for efficient communication with humans. The android Nikola, we have developed, is equipped with many actuators for facial muscle control. While this enables Nikola to simulate various human expressions, it also complicates identification of the optimal parameters for producing desired expressions. Here, we propose a novel method that automati-cally optimizes the facial expressions of our android. We use a machine vision algorithm to evaluate the magnitudes of seven basic emotions, and employ the Bayesian Optimization algorithm to identify the parameters that produce the most convincing facial expressions. Evaluations by naïve human participants demonstrate that our method improves the rated strength of the android's facial expressions of anger, disgust, sadness, and surprise compared with the previous method that relied on Ekman's theory and parameter adjustments by a human expert.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效优化Android机器人面部表情:贝叶斯优化方法
表达各种面部情绪是人与人之间有效沟通的重要社会能力。人机交互研究的一个关键挑战是让机器人能够做出各种类似人类的面部表情,以便与人类进行有效的交流。我们开发的机器人尼古拉,配备了许多用于面部肌肉控制的驱动器。虽然这使Nikola能够模拟各种人类表情,但它也使识别产生所需表情的最佳参数变得复杂。在这里,我们提出了一种新的方法来自动优化我们的机器人的面部表情。我们使用机器视觉算法来评估七种基本情绪的大小,并使用贝叶斯优化算法来识别产生最令人信服的面部表情的参数。naïve人类参与者的评估表明,与之前依赖Ekman理论和人类专家参数调整的方法相比,我们的方法提高了机器人愤怒、厌恶、悲伤和惊讶等面部表情的评级强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Patient- and Teleoperator-led Robotic Physiotherapy via Strain Map Segmentation and Shared-authority Self-Contained Calibration of an Elastic Humanoid Upper Body Using Only a Head-Mounted RGB Camera Self-collision avoidance in bimanual teleoperation using CollisionIK: algorithm revision and usability experiment Bimanual Manipulation Workspace Analysis of Humanoid Robots with Object Specific Coupling Constraints A Dexterous, Adaptive, Affordable, Humanlike Robot Hand: Towards Prostheses with Dexterous Manipulation Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1