{"title":"L'inducteur céphalique Cerberus est un inhibiteur multivalent extracellulaire","authors":"E. Agius, Stefano Piccolo, E. D. Robertis","doi":"10.1051/JBIO/1999193040347","DOIUrl":null,"url":null,"abstract":"The head inducer Cerberus is a multivalent extracellular inhibitor \n \nCerberus encodes for a secreted protein which when overexpressed ventrally in a Xenopus embryo induces head differentiation without trunk (Bouwmeester et al., 1996). We have recently shown that Cerberus can bind BMP-4 (Bone Morphogenetic Protein-4), Xnr-1 (Xenopus Nodal-related 1) and Xwnt-8 in the extracellular space (Piccolo et al., 1999). We present here studies showing that Cerberus does not have a receptor nor a dedicated transduction pathway but rather acts as an extracellular inhibitor. Our results suggest that the action of Cerberus in head induction can be explained by an inhibitory activity upstream of the Nodal-related and BMP-4 receptors. In addition, using dominant negative receptor mutants which block both the Xnr-1 and BMP-4 transduction pathways, we show that this double inhibition is sufficient for head induction in ventral mesoderm explants.","PeriodicalId":150011,"journal":{"name":"Biologie aujourd'hui","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologie aujourd'hui","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JBIO/1999193040347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The head inducer Cerberus is a multivalent extracellular inhibitor
Cerberus encodes for a secreted protein which when overexpressed ventrally in a Xenopus embryo induces head differentiation without trunk (Bouwmeester et al., 1996). We have recently shown that Cerberus can bind BMP-4 (Bone Morphogenetic Protein-4), Xnr-1 (Xenopus Nodal-related 1) and Xwnt-8 in the extracellular space (Piccolo et al., 1999). We present here studies showing that Cerberus does not have a receptor nor a dedicated transduction pathway but rather acts as an extracellular inhibitor. Our results suggest that the action of Cerberus in head induction can be explained by an inhibitory activity upstream of the Nodal-related and BMP-4 receptors. In addition, using dominant negative receptor mutants which block both the Xnr-1 and BMP-4 transduction pathways, we show that this double inhibition is sufficient for head induction in ventral mesoderm explants.