Convolutional Neural Network-based Media Noise Prediction and Equalization for TDMR Turbo-detection with Write/Read TMR

Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James
{"title":"Convolutional Neural Network-based Media Noise Prediction and Equalization for TDMR Turbo-detection with Write/Read TMR","authors":"Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James","doi":"10.1109/TMRC56419.2022.9918551","DOIUrl":null,"url":null,"abstract":"This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的TDMR涡轮检测媒体噪声预测与均衡
本文提出了一种涡轮检测系统,该系统由基于卷积神经网络(CNN)的均衡器、Bahl-Cocke-Jelinek-Raviv (BCJR)栅格检测器、基于CNN的媒体噪声预测器(MNP)和用于二维磁记录(TDMR)的低密度奇偶校验(LDPC)信道解码器组成。BCJR检测器、CNN MNP和LDPC解码器迭代交换软信息,在误码率约束下最大化面密度(AD)。仿真结果表明,该系统对跟踪配准错误具有较强的鲁棒性。与带有软轨间干扰(ITI)减法的I-D模式相关噪声预测(PDNP)基线相比,该系统在单独读取tmr时获得0.34%的AD增益,在同时写入和读取tmr时获得0.69%的AD增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Design of Diagnostic strategy for Radar System Based on Rollout Algorithm
IF 0 Journal of Physics: Conference SeriesPub Date : 2021-01-01 DOI: 10.1088/1742-6596/1961/1/012052
Xiaoshuai Du, Bing Hu
Wireless Sensor Missing Value Estimation Algorithm Based On Multi-Attribute
IF 0 DEStech Transactions on Computer Science and EngineeringPub Date : 2021-03-13 DOI: 10.12783/DTCSE/CCNT2020/35435
Xingliang Zhang, Tao Fang, Chun Yang, Zhengzheng Huang, Xiaodie Zhang
Fault diagnostic strategy of multivalued attribute system based on growing algorithm
IF 2.1 4区 工程技术Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and ReliabilityPub Date : 2019-04-01 DOI: 10.1177/1748006X18770356
Heng Tian, F. Duan, Liang Fan, Y. Sang
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Spin Hall Angle doped BiSbX Topological Insulators using novel high resistive growth and migration barrier layers TMRC 2022 Program CD Molecular dynamic simulation on the adsorption between D-4OH lubricant and amorphous carbon film for HAMR disk Front Page Magneto-Ionic Control of Spin Textures and Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1