Matteo Biggio, F. Bizzarri, A. Brambilla, M. Storace
{"title":"Efficient transient noise analysis of non-periodic mixed analogue/digital circuits","authors":"Matteo Biggio, F. Bizzarri, A. Brambilla, M. Storace","doi":"10.1049/IET-CDS.2013.0438","DOIUrl":null,"url":null,"abstract":"This paper proposes a numerical method for accurate time-domain noise simulation of mixed analogue/digital electrical circuits that in principle do not admit a periodic steady-state working condition, such as fractional ΔΣ phase-locked loops (PLLs). By means of a tool known as saltation matrix, which allows dealing with non-smooth vector fields, a variational approach is adopted. The power spectral density of a noisy electrical variable is computed by applying the Thomson's multitaper method (MTM) to the numerical solution of the stochastic variational model of the circuit. This allows to resort to a single transient simulation run, thus avoiding cpu time consuming Monte-Carlo-like approaches. The effectiveness of the proposed method is shown by comparing simulation results related to a commercial fractional ΔΣ PLL with experimental data.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-CDS.2013.0438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper proposes a numerical method for accurate time-domain noise simulation of mixed analogue/digital electrical circuits that in principle do not admit a periodic steady-state working condition, such as fractional ΔΣ phase-locked loops (PLLs). By means of a tool known as saltation matrix, which allows dealing with non-smooth vector fields, a variational approach is adopted. The power spectral density of a noisy electrical variable is computed by applying the Thomson's multitaper method (MTM) to the numerical solution of the stochastic variational model of the circuit. This allows to resort to a single transient simulation run, thus avoiding cpu time consuming Monte-Carlo-like approaches. The effectiveness of the proposed method is shown by comparing simulation results related to a commercial fractional ΔΣ PLL with experimental data.