Investigations and Concerns about the Fate of Transgenic DNA and Protein in Livestock

A. Aykaç, Izel Ok
{"title":"Investigations and Concerns about the Fate of Transgenic DNA and Protein in Livestock","authors":"A. Aykaç, Izel Ok","doi":"10.52460/issc.2021.046","DOIUrl":null,"url":null,"abstract":"Hydrogels are biocompatible and swollen materials that have been used as a wound dressing for years. Among them, chitosan-based hydrogels have become popular in the wound healing process owing to their low toxic, biocompatible, biodegradable, antibacterial properties. Chitosan (CS) has been used either as a pure form or incorporated with polymers or nanoparticles to increase antimicrobial activity and stability. In this context, zinc oxide nanoparticles (ZnO NPs) have been used to enhance antibacterial activity and mesoporous silica nanoparticles (MSN) have been employed to develop mechanical strength and control of drug release time. In this study, we report the synthesis and fully characterizations of ZnO NPs, MSN and the hydrogel by using dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR). We have also prepared and characterized chitosan-based hydrogels functionalized by MSNs and ZnO NPs.","PeriodicalId":136262,"journal":{"name":"5th International Students Science Congress","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Students Science Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52460/issc.2021.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels are biocompatible and swollen materials that have been used as a wound dressing for years. Among them, chitosan-based hydrogels have become popular in the wound healing process owing to their low toxic, biocompatible, biodegradable, antibacterial properties. Chitosan (CS) has been used either as a pure form or incorporated with polymers or nanoparticles to increase antimicrobial activity and stability. In this context, zinc oxide nanoparticles (ZnO NPs) have been used to enhance antibacterial activity and mesoporous silica nanoparticles (MSN) have been employed to develop mechanical strength and control of drug release time. In this study, we report the synthesis and fully characterizations of ZnO NPs, MSN and the hydrogel by using dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR). We have also prepared and characterized chitosan-based hydrogels functionalized by MSNs and ZnO NPs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转基因DNA和蛋白在家畜中的命运调查与担忧
水凝胶是一种生物相容性和肿胀材料,多年来一直被用作伤口敷料。其中,壳聚糖基水凝胶因其低毒、生物相容性、可生物降解、抗菌等特性而在伤口愈合过程中得到广泛应用。壳聚糖(CS)既可以作为纯形式使用,也可以与聚合物或纳米颗粒结合使用,以提高抗菌活性和稳定性。在此背景下,氧化锌纳米颗粒(ZnO NPs)被用于增强抗菌活性,介孔二氧化硅纳米颗粒(MSN)被用于提高机械强度和控制药物释放时间。在这项研究中,我们报道了ZnO NPs、MSN和水凝胶的合成,并利用动态光散射(DLS)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)对其进行了全面表征。我们还制备并表征了由二氧化硅微球和氧化锌微球功能化的壳聚糖基水凝胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rural Electrification with Solar Powered Mini-Grids and Stand-Alone Solar System Installations: Case of Somali Investigations and Concerns about the Fate of Transgenic DNA and Protein in Livestock Stochastic Optimization of TiO2-Graphene Nanocomposite by Using Neuro-Regression Approach for Maximum Photocatalytic Degradation Rate Fertilizer Rate for Optimum Growth and Yield of Egusi Melon (ColocynthiscitrullusL.)/ Hot Pepper (Capsicum chinense, Jackquin cv. rodo) Intercrop Design and Production of Man Powered Olive Harvest Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1