A Model Predictive Control-Based Voltage and Frequency Regulation through Distributed Generation in Isolated Microgrids: Part II Model Predictive Controller Implementation
Md. Nasmus Sakib Khan Shabbir, Xiaodong Liang, Weixin Li, S. Imtiaz, J. Quaicoe
{"title":"A Model Predictive Control-Based Voltage and Frequency Regulation through Distributed Generation in Isolated Microgrids: Part II Model Predictive Controller Implementation","authors":"Md. Nasmus Sakib Khan Shabbir, Xiaodong Liang, Weixin Li, S. Imtiaz, J. Quaicoe","doi":"10.1109/ICPS54075.2022.9773851","DOIUrl":null,"url":null,"abstract":"To realize operation automation in remote islanded microgrids, a model predictive control (MPC)-based distributed generation (DG) controller is proposed in Part 2 of this paper. The developed data-driven predictive model in Part 1 of this paper is implemented in Part 2 to realize the MPC controller. The proposed MPC controller does not incorporate any tunable coefficients, which may be sensitive under various operating conditions. Kalman filter-based state observer updates the system model with varying operating conditions. The KWIK optimizer is used to solve the MPC’s constrained quadratic programming problem as it ensures a guaranteed convergence. The controller is smaller in size and does not require any intra-DG communication network. It ensures equal and proportional power sharing despite feeder line impedance mismatch. The effectiveness of the proposed MPC controller is validated through case studies.","PeriodicalId":428784,"journal":{"name":"2022 IEEE/IAS 58th Industrial and Commercial Power Systems Technical Conference (I&CPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/IAS 58th Industrial and Commercial Power Systems Technical Conference (I&CPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS54075.2022.9773851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To realize operation automation in remote islanded microgrids, a model predictive control (MPC)-based distributed generation (DG) controller is proposed in Part 2 of this paper. The developed data-driven predictive model in Part 1 of this paper is implemented in Part 2 to realize the MPC controller. The proposed MPC controller does not incorporate any tunable coefficients, which may be sensitive under various operating conditions. Kalman filter-based state observer updates the system model with varying operating conditions. The KWIK optimizer is used to solve the MPC’s constrained quadratic programming problem as it ensures a guaranteed convergence. The controller is smaller in size and does not require any intra-DG communication network. It ensures equal and proportional power sharing despite feeder line impedance mismatch. The effectiveness of the proposed MPC controller is validated through case studies.