Human Activity Recognition Based on 4-Domain Radar Deep Transfer Learning

Ahmad Alkasimi, Anh-Vu Pham, Christopher S. Gardner, B. Funsten
{"title":"Human Activity Recognition Based on 4-Domain Radar Deep Transfer Learning","authors":"Ahmad Alkasimi, Anh-Vu Pham, Christopher S. Gardner, B. Funsten","doi":"10.1109/RadarConf2351548.2023.10149668","DOIUrl":null,"url":null,"abstract":"We demonstrate the improvement of theradar-based human activity recognition using the combination of four datadomains: time-frequency, time-range, range-Doppler and, for the first time,time-angle domain. Six different activities are observed from nine subjectsusing frequency-modulated continuous-wave millimeter-wave radar. Each domainoffers additional information to the classification process. The classificationresults of four deep convolutional neural networks are then combined using theJoint Probability Mass Function method to achieve a combined classificationaccuracy of 100%. The proposed system also demonstrates similar performance inrecognizing activities from participants not involved in training the network.To the best of our knowledge, this is the first work that demonstrates theutilization of four data domains to address the radar-based human activityrecognition problem.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate the improvement of theradar-based human activity recognition using the combination of four datadomains: time-frequency, time-range, range-Doppler and, for the first time,time-angle domain. Six different activities are observed from nine subjectsusing frequency-modulated continuous-wave millimeter-wave radar. Each domainoffers additional information to the classification process. The classificationresults of four deep convolutional neural networks are then combined using theJoint Probability Mass Function method to achieve a combined classificationaccuracy of 100%. The proposed system also demonstrates similar performance inrecognizing activities from participants not involved in training the network.To the best of our knowledge, this is the first work that demonstrates theutilization of four data domains to address the radar-based human activityrecognition problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于四域雷达深度迁移学习的人体活动识别
我们展示了基于雷达的人类活动识别的改进,使用四个数据域的组合:时频,时程,距离多普勒和时间角域,首次。使用调频连续波毫米波雷达对9名受试者观察到6种不同的活动。每个域都为分类过程提供了额外的信息。然后将四个深度卷积神经网络的分类结果使用联合概率质量函数方法进行组合,以实现100%的组合分类精度。所提出的系统在识别未参与训练网络的参与者的活动时也表现出类似的性能。据我们所知,这是第一个展示利用四个数据域来解决基于雷达的人类活动识别问题的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1