Q. Zhang, Yongzhi Zhu, Chuanhao Lan, Qinghang Mao, Yikai Cui
{"title":"Weibo rumor detection based on GCN","authors":"Q. Zhang, Yongzhi Zhu, Chuanhao Lan, Qinghang Mao, Yikai Cui","doi":"10.1117/12.2671057","DOIUrl":null,"url":null,"abstract":"In the era of information explosion, rumors will cause great harm and affect social stability. Most rumor detection methods concentrate on extracting features from content and consumer information. We propose a brand-new approach to early rumor identification, MSR-GAT. Firstly, the source text and comment text are fused as node features and the relation between events is considered edge information. Then, the graph attention model is constructed to classify nodes and complete rumor detection. The experimental findings demonstrate that the detection algorithm outperforms the baselines algorithm in accuracy, precision, recall and F1-Measure. It can accurately identify rumors.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of information explosion, rumors will cause great harm and affect social stability. Most rumor detection methods concentrate on extracting features from content and consumer information. We propose a brand-new approach to early rumor identification, MSR-GAT. Firstly, the source text and comment text are fused as node features and the relation between events is considered edge information. Then, the graph attention model is constructed to classify nodes and complete rumor detection. The experimental findings demonstrate that the detection algorithm outperforms the baselines algorithm in accuracy, precision, recall and F1-Measure. It can accurately identify rumors.