On-ground experimental verification of magnetic attitude control for nanosatellites

Anton Bahu, D. Modenini
{"title":"On-ground experimental verification of magnetic attitude control for nanosatellites","authors":"Anton Bahu, D. Modenini","doi":"10.1109/MetroAeroSpace51421.2021.9511720","DOIUrl":null,"url":null,"abstract":"For reliable verification of attitude determination and control systems, ground-based hardware-in-the-loop simulations are strongly desirable. To this end, a Three-Degrees of Freedom Dynamic Testbed for CubeSats has been developed at the University of Bologna. In this paper, the development of a platform for 1U CubeSats testing is described. Within the facility, disturbance-free environment is guaranteed and a magnetic field is generated by a Helmholtz cage to enable experimental verification of magnetic attitude control systems. A COTS CubeSat mockup is integrated and employed to test detumbling, spin-axis pointing and three-axis attitude control laws relying on magnetorquers only. The experimental results show the facility capabilities in highly demanding magnetic attitude control scenarios.","PeriodicalId":236783,"journal":{"name":"2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace51421.2021.9511720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For reliable verification of attitude determination and control systems, ground-based hardware-in-the-loop simulations are strongly desirable. To this end, a Three-Degrees of Freedom Dynamic Testbed for CubeSats has been developed at the University of Bologna. In this paper, the development of a platform for 1U CubeSats testing is described. Within the facility, disturbance-free environment is guaranteed and a magnetic field is generated by a Helmholtz cage to enable experimental verification of magnetic attitude control systems. A COTS CubeSat mockup is integrated and employed to test detumbling, spin-axis pointing and three-axis attitude control laws relying on magnetorquers only. The experimental results show the facility capabilities in highly demanding magnetic attitude control scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米卫星磁姿控制的地面实验验证
为了可靠地验证姿态确定和控制系统,地面硬件在环仿真是非常必要的。为此,博洛尼亚大学开发了一个三自由度立方体卫星动态试验台。本文介绍了一种1U立方体卫星测试平台的开发。在设施内,确保无干扰的环境,并由亥姆霍兹笼产生磁场,以实现磁姿态控制系统的实验验证。集成了COTS立方体卫星模型,仅依靠磁致力矩器测试了坠落、自旋轴指向和三轴姿态控制律。实验结果表明,该装置能够满足高要求的磁姿态控制要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Optimization of Fault-tolerant Spacecraft Control at Interorbital Flights Transportable ATC Systems Metrology Plasma and material temperature/emissivity knowledge by applied physics technique based on compact VNIR emission spectroscopy in aerospace re-entry Orbit Design for Satellite Formations devoted to Space Environment Measurements The new metrology for Space might not be SMART
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1