A Systematic Mapping Study of Low-Grade Tumor of Brain Cancer and CSF Fluid Detecting Approaches and Parameters

S. Saeed, Habibullah Bin Haroon, M. Naqvi, N. Jhanjhi, Muneer Ahmad, Loveleen Gaur
{"title":"A Systematic Mapping Study of Low-Grade Tumor of Brain Cancer and CSF Fluid Detecting Approaches and Parameters","authors":"S. Saeed, Habibullah Bin Haroon, M. Naqvi, N. Jhanjhi, Muneer Ahmad, Loveleen Gaur","doi":"10.4018/978-1-7998-8929-8.ch010","DOIUrl":null,"url":null,"abstract":"Low-grade tumor or CSF fluid, the symptoms of brain tumor and CSF liquid, usually require image segmentation to evaluate tumor detection in brain images. This research uses systematic literature review (SLR) process for analysis of the different segmentation approach for detecting the low-grade tumor and CSF fluid presence in the brain. This research work investigated how to evaluate and detect the tumor and CSF fluid, improve segmentation method to detect tumor through graph cut hidden markov model of k-mean clustering algorithm (GCHMkC) techniques and parameters, extract the missing values in k-NN algorithm through correlation matrix of hybrid k-NN algorithm with time lag and discrete fourier transformation (DFT) techniques and parameters, and convert the non-linear data into linear transformation using LE-LPP and time complexity techniques and parameters.","PeriodicalId":148158,"journal":{"name":"Approaches and Applications of Deep Learning in Virtual Medical Care","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Approaches and Applications of Deep Learning in Virtual Medical Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8929-8.ch010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Low-grade tumor or CSF fluid, the symptoms of brain tumor and CSF liquid, usually require image segmentation to evaluate tumor detection in brain images. This research uses systematic literature review (SLR) process for analysis of the different segmentation approach for detecting the low-grade tumor and CSF fluid presence in the brain. This research work investigated how to evaluate and detect the tumor and CSF fluid, improve segmentation method to detect tumor through graph cut hidden markov model of k-mean clustering algorithm (GCHMkC) techniques and parameters, extract the missing values in k-NN algorithm through correlation matrix of hybrid k-NN algorithm with time lag and discrete fourier transformation (DFT) techniques and parameters, and convert the non-linear data into linear transformation using LE-LPP and time complexity techniques and parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑癌低级别肿瘤的系统定位研究及脑脊液检测方法和参数
低级别肿瘤或脑脊液,脑肿瘤和脑脊液的症状,通常需要图像分割来评价脑图像中的肿瘤检测。本研究采用系统文献回顾(SLR)的方法,对检测颅内低级别肿瘤和脑脊液存在的不同分割方法进行分析。本研究研究了如何对肿瘤和脑脊液进行评估和检测,通过图切隐马尔可夫模型的k均值聚类算法(GCHMkC)技术和参数改进分割方法来检测肿瘤,通过混合k-NN算法的相关矩阵与时滞和离散傅里叶变换(DFT)技术和参数提取k-NN算法中的缺失值,利用LE-LPP和时间复杂度技术及参数将非线性数据转换成线性变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual Technical Aids to Help People With Dysgraphia Overview and Analysis of Present-Day Diabetic Retinopathy (DR) Detection Techniques Optimized Breast Cancer Premature Detection Method With Computational Segmentation Importance of Deep Learning Models in the Medical Imaging Field A Systematic Mapping Study of Low-Grade Tumor of Brain Cancer and CSF Fluid Detecting Approaches and Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1