Influence of image force potential on the shot noise properties of field emitters

K. Rangaswamy, M. Cahay, K. Jensen
{"title":"Influence of image force potential on the shot noise properties of field emitters","authors":"K. Rangaswamy, M. Cahay, K. Jensen","doi":"10.1109/IVNC.2004.1354907","DOIUrl":null,"url":null,"abstract":"A quantum-mechanical wave impedance approach is used to calculate the shot noise power spectrum of the emission current from planar metallic cathodes starting with the Landauer-Buttiker formalism. The formalism takes into account the effects of the image force potential in front of the cathode. For metals with low work-function, the Fano factor which characterizes the reduction of the shot noise power below the Schottky result is calculated as a function of the applied external electric field. Simple analytical expressions for the Fano factor are derived for the cathode operated in the thermionic (Richardson) and tunneling regimes (Fowler-Nordheim approximation). The value of the Fano factor is found to be reduced substantially below the value calculated when the effects of the image charge potential are neglected. The approach can be readily extended to include space-charge effects in the vacuum gap.","PeriodicalId":137345,"journal":{"name":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC.2004.1354907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A quantum-mechanical wave impedance approach is used to calculate the shot noise power spectrum of the emission current from planar metallic cathodes starting with the Landauer-Buttiker formalism. The formalism takes into account the effects of the image force potential in front of the cathode. For metals with low work-function, the Fano factor which characterizes the reduction of the shot noise power below the Schottky result is calculated as a function of the applied external electric field. Simple analytical expressions for the Fano factor are derived for the cathode operated in the thermionic (Richardson) and tunneling regimes (Fowler-Nordheim approximation). The value of the Fano factor is found to be reduced substantially below the value calculated when the effects of the image charge potential are neglected. The approach can be readily extended to include space-charge effects in the vacuum gap.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
像力势对场发射体散粒噪声特性的影响
从Landauer-Buttiker形式出发,采用量子力学波阻抗法计算了平面金属阴极发射电流的散粒噪声功率谱。该公式考虑了阴极前像力势的影响。对于功函数较低的金属,表征弹射噪声功率降至肖特基结果以下的Fano因子作为外加电场的函数来计算。对于在热离子(Richardson)和隧道(Fowler-Nordheim近似)下工作的阴极,导出了Fano因子的简单解析表达式。当忽略像电荷势的影响时,发现Fano因子的值大大降低,低于计算值。该方法可以很容易地扩展到包括真空间隙中的空间电荷效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stable and high emission current from carbon nanotube paste with spin on glass Field emission from polymer flims Properties of single field emitters deduced by use of spherical Fowler-Nordheim theory X-ray generation from large area carbon-based field emitters Development of a MEMS-based gate to enhance cold-cathode electron field emission for space applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1