Proactive Ontology-based Cyber Threat Intelligence Analytic

Yazid Merah, Tayeb Kenaza
{"title":"Proactive Ontology-based Cyber Threat Intelligence Analytic","authors":"Yazid Merah, Tayeb Kenaza","doi":"10.1109/ICRAMI52622.2021.9585984","DOIUrl":null,"url":null,"abstract":"Exploiting Cyber Threat Intelligence (CTI) as a valuable, updated, and structured source of information on threats and vulnerabilities can be a strong support for providing effective cybersecurity solutions. CTIs are shared across dedicated online platforms via a machine-readable format, such as Structured Threat Information eXpression (STIX). Meanwhile, ontology-based semantic knowledge modeling has become a promising solution that provides a machine-readable language for downstream work to address cybersecurity issues. Hence, by incorporating STIX concepts we propose in this paper an ontological-based CTI analysis that provides valuable threats information according to the security alerts reported by an analyzer. To test our ontology, we developed a set of reasoning rules to infer new knowledge on cyber threats. The experimental results show that such knowledge can be inferred by applying our approach for an ongoing and effective monitoring of cyber threats.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Exploiting Cyber Threat Intelligence (CTI) as a valuable, updated, and structured source of information on threats and vulnerabilities can be a strong support for providing effective cybersecurity solutions. CTIs are shared across dedicated online platforms via a machine-readable format, such as Structured Threat Information eXpression (STIX). Meanwhile, ontology-based semantic knowledge modeling has become a promising solution that provides a machine-readable language for downstream work to address cybersecurity issues. Hence, by incorporating STIX concepts we propose in this paper an ontological-based CTI analysis that provides valuable threats information according to the security alerts reported by an analyzer. To test our ontology, we developed a set of reasoning rules to infer new knowledge on cyber threats. The experimental results show that such knowledge can be inferred by applying our approach for an ongoing and effective monitoring of cyber threats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主动本体的网络威胁情报分析
利用网络威胁情报(CTI)作为一种有价值的、更新的、结构化的威胁和漏洞信息来源,可以为提供有效的网络安全解决方案提供强有力的支持。cti通过机器可读格式在专用在线平台上共享,例如结构化威胁信息表达(STIX)。同时,基于本体的语义知识建模已经成为一种很有前途的解决方案,它为下游工作提供了一种机器可读的语言来解决网络安全问题。因此,通过结合STIX概念,我们在本文中提出了一种基于本体论的CTI分析,根据分析器报告的安全警报提供有价值的威胁信息。为了测试我们的本体,我们开发了一套推理规则来推断关于网络威胁的新知识。实验结果表明,通过应用我们的方法对网络威胁进行持续有效的监测,可以推断出这些知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1