Assignment problem solved by two metaheuristic algorithms ACO and HHO

El Attaoui Anas, Norelislam El Hami
{"title":"Assignment problem solved by two metaheuristic algorithms ACO and HHO","authors":"El Attaoui Anas, Norelislam El Hami","doi":"10.1109/ICOA55659.2022.9934141","DOIUrl":null,"url":null,"abstract":"This study presents two population-based, nature-inspired optimization paradigms, named “Harris Hawks Optimization” HHO and “Ant Colony Optimization” ACO. The inspiration of HHO is the collaborative performance and chasing style of Harris' hawks in nature. Otherwise, ACO is inspired by studying the behaviour of real ants. Those two natural motions were scientifically represented to build optimization algorithms. The performance of HHO and ACO optimizers is checked throughout a comparison based on various test functions and an application of a problem called: Minimizing the cost of assigning personnel to a plant.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents two population-based, nature-inspired optimization paradigms, named “Harris Hawks Optimization” HHO and “Ant Colony Optimization” ACO. The inspiration of HHO is the collaborative performance and chasing style of Harris' hawks in nature. Otherwise, ACO is inspired by studying the behaviour of real ants. Those two natural motions were scientifically represented to build optimization algorithms. The performance of HHO and ACO optimizers is checked throughout a comparison based on various test functions and an application of a problem called: Minimizing the cost of assigning personnel to a plant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用ACO和HHO两种元启发式算法求解分配问题
本研究提出了两种基于群体的、受自然启发的优化范式,分别命名为“Harris Hawks optimization”HHO和“Ant Colony optimization”ACO。HHO的灵感来源于自然界中哈里斯鹰的协同表演和追逐风格。除此之外,蚁群算法的灵感来自于对真实蚂蚁行为的研究。对这两种自然运动进行科学表征,构建优化算法。HHO和ACO优化器的性能通过基于各种测试功能的比较来检查,并应用一个问题:将人员分配到工厂的成本降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1