Covariance and autocorrelation methods for vector linear prediction

Juin-Hwey Chen, A. Gersho
{"title":"Covariance and autocorrelation methods for vector linear prediction","authors":"Juin-Hwey Chen, A. Gersho","doi":"10.1109/ICASSP.1987.1169517","DOIUrl":null,"url":null,"abstract":"A novel least-squares formulation of the vector linear prediction (VLP) problem is presented. Based on this formulation, we develop two new design methods for obtaining the optimal vector predictor for frame-adaptive prediction: the covariance method and the autocorrelation method, which bear the names of the corresponding methods in scalar LPC analysis. Our formulation reveals several previously unrecognized properties of the resulting normal equation. Simulation results for VLP of speech waveforms confirm that the two proposed methods indeed give higher prediction gain than previously developed methods.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A novel least-squares formulation of the vector linear prediction (VLP) problem is presented. Based on this formulation, we develop two new design methods for obtaining the optimal vector predictor for frame-adaptive prediction: the covariance method and the autocorrelation method, which bear the names of the corresponding methods in scalar LPC analysis. Our formulation reveals several previously unrecognized properties of the resulting normal equation. Simulation results for VLP of speech waveforms confirm that the two proposed methods indeed give higher prediction gain than previously developed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向量线性预测的协方差和自相关方法
提出了向量线性预测(VLP)问题的一种新的最小二乘公式。在此基础上,我们提出了两种新的设计方法来获得帧自适应预测的最优向量预测器:协方差法和自相关法,这两种方法与标量LPC分析中相应的方法名称相同。我们的公式揭示了几个以前未被认识到的常规方程的性质。语音波形的VLP仿真结果证实了这两种方法的预测增益确实高于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1