PSO Adaptive Fading Memory Kalman Filter Based State Estimation of Indoor Thermal Model with Unknown Inputs

Bed Prakash Das, K. D. Sharma, A. Chatterjee, J. Bera
{"title":"PSO Adaptive Fading Memory Kalman Filter Based State Estimation of Indoor Thermal Model with Unknown Inputs","authors":"Bed Prakash Das, K. D. Sharma, A. Chatterjee, J. Bera","doi":"10.1109/IBSSC56953.2022.10037453","DOIUrl":null,"url":null,"abstract":"An adaptive filtering approach is proposed in this paper to address the thermal state estimation methodology along with the model parameters jointly for an indoor thermodynamic resistance capacitance model with uncertain stochastic heating inputs. The adaptive dynamics of the state of the model is combined with a particle swarm optimization (PSO) based metaheuristic approach to feed the knowledge of measurement noise statistics and the initial estimation error covariance along with forgetting factor for implementation of fading memory Kalman filter (FMKF). This study has been carried out with the variation of uncertain influential input information to enhance the estimation efficiency with the proposed PSO adaptive FMKF (PSO-AdFMKF) strategy for a real life the test thermodynamic environment scenario inside the building space. Potential observations demonstrate that the proposed estimation algorithm performs encouragingly, with a satisfactory improvement of estimation performance in terms of evaluating error metrics.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An adaptive filtering approach is proposed in this paper to address the thermal state estimation methodology along with the model parameters jointly for an indoor thermodynamic resistance capacitance model with uncertain stochastic heating inputs. The adaptive dynamics of the state of the model is combined with a particle swarm optimization (PSO) based metaheuristic approach to feed the knowledge of measurement noise statistics and the initial estimation error covariance along with forgetting factor for implementation of fading memory Kalman filter (FMKF). This study has been carried out with the variation of uncertain influential input information to enhance the estimation efficiency with the proposed PSO adaptive FMKF (PSO-AdFMKF) strategy for a real life the test thermodynamic environment scenario inside the building space. Potential observations demonstrate that the proposed estimation algorithm performs encouragingly, with a satisfactory improvement of estimation performance in terms of evaluating error metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PSO自适应衰落记忆卡尔曼滤波的未知输入室内热模型状态估计
针对具有不确定随机热输入的室内热阻电容模型,提出了一种自适应滤波方法,并结合模型参数对热状态进行估计。将模型状态的自适应动态特性与基于粒子群优化(PSO)的元启发式方法相结合,利用测量噪声统计信息和初始估计误差协方差以及遗忘因子来实现衰落记忆卡尔曼滤波(FMKF)。针对建筑空间内的真实测试热力学环境场景,利用不确定影响输入信息的变化,提出了PSO自适应FMKF (PSO- adfmkf)策略,以提高估计效率。潜在的观察结果表明,所提出的估计算法的性能令人鼓舞,在评估误差度量方面,估计性能有了令人满意的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Ride Hailing System using Blockchain and IPFS Implementation of RFID-based Lab Inventory System Monkeypox Skin Lesion Classification Using Transfer Learning Approach A Solution to the Techno-Economic Generation Expansion Planning using Enhanced Dwarf Mongoose Optimization Algorithm Citation Count Prediction Using Different Time Series Analysis Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1