{"title":"Real-Time Activity Monitoring Algorithm Using A Tri-axial Accelerometer","authors":"Hyung-Suk Lho, Yunsik Kim, W. Cho","doi":"10.3745/KIPSTD.2011.18D.2.143","DOIUrl":null,"url":null,"abstract":"In this paper developed a wearable activity device and algorithm which can be converted into the real-time activity and monitoring by acquiring sensor row data to be occurred when a person is walking by using a tri-axial accelerometer. Test was proceeded at various step speeds such as slow walking, walking, fast walking, slow running, running and fast running, etc. for 36 minutes in accordance with the test protocol after wearing a metabolic test system(K4B2), Actical and the device developed in this study at the treadmill with 59 participants of subjects as its target. To measure the activity of human body, a regression equation estimating the Energy Expenditure(EE) was drawn by using data output from the accelerometer and information on subjects. As a result of experiment, the recognition rate of algorithm being proposed was shown the activity conversion algorithm was enhanced by 1.61% better than the performance of Actical.","PeriodicalId":348746,"journal":{"name":"The Kips Transactions:partd","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partd","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTD.2011.18D.2.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper developed a wearable activity device and algorithm which can be converted into the real-time activity and monitoring by acquiring sensor row data to be occurred when a person is walking by using a tri-axial accelerometer. Test was proceeded at various step speeds such as slow walking, walking, fast walking, slow running, running and fast running, etc. for 36 minutes in accordance with the test protocol after wearing a metabolic test system(K4B2), Actical and the device developed in this study at the treadmill with 59 participants of subjects as its target. To measure the activity of human body, a regression equation estimating the Energy Expenditure(EE) was drawn by using data output from the accelerometer and information on subjects. As a result of experiment, the recognition rate of algorithm being proposed was shown the activity conversion algorithm was enhanced by 1.61% better than the performance of Actical.