Effect of Time Resolution on Capacity Expansion Modeling to Quantify Value of Long-Duration Energy Storage

P. Sánchez-Pérez, S. Kurtz, Natalia Gonzalez, Martin Staadecker, Patricia Hidalgo-Gonzalez
{"title":"Effect of Time Resolution on Capacity Expansion Modeling to Quantify Value of Long-Duration Energy Storage","authors":"P. Sánchez-Pérez, S. Kurtz, Natalia Gonzalez, Martin Staadecker, Patricia Hidalgo-Gonzalez","doi":"10.1109/EESAT55007.2022.9998031","DOIUrl":null,"url":null,"abstract":"Long-duration energy storage (LDES) technologies have been recently included in capacity expansion models for long-term planning. Many of these models have a simplified temporal resolution to reduce the computation time to achieve faster scenario results. However, it is unclear if these simplifications change the optimal solution for LDES, especially when modeling grids dominated by variable renewable energy (VRE) generation. For this reason, we studied how such temporal simplification changes the modeled optimal power and energy capacity of LDES technologies. We formulated a capacity expansion problem for the California region using three different temporal resolutions. We obtained that decreasing the model complexity by using fewer time points yielded different configurations and utilization of LDES technologies.","PeriodicalId":310250,"journal":{"name":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESAT55007.2022.9998031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Long-duration energy storage (LDES) technologies have been recently included in capacity expansion models for long-term planning. Many of these models have a simplified temporal resolution to reduce the computation time to achieve faster scenario results. However, it is unclear if these simplifications change the optimal solution for LDES, especially when modeling grids dominated by variable renewable energy (VRE) generation. For this reason, we studied how such temporal simplification changes the modeled optimal power and energy capacity of LDES technologies. We formulated a capacity expansion problem for the California region using three different temporal resolutions. We obtained that decreasing the model complexity by using fewer time points yielded different configurations and utilization of LDES technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间分辨率对容量扩展建模的影响,以量化长期储能的价值
长期储能(LDES)技术最近被纳入长期规划的容量扩展模型。这些模型中的许多都具有简化的时间分辨率,以减少计算时间,从而获得更快的场景结果。然而,目前尚不清楚这些简化是否会改变LDES的最佳解决方案,特别是在以可变可再生能源(VRE)发电为主的电网建模时。因此,我们研究了这种时间简化如何改变LDES技术的模型最优功率和能量容量。我们使用三种不同的时间分辨率为加利福尼亚地区制定了一个容量扩展问题。结果表明,通过减少时间点来降低模型复杂度,可以获得不同的LDES技术配置和利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Storage Gas Peaker Replacement: Optimal Sizing and Environmental Benefits Vanadium Redox Flow Battery Field Testing Results Equitable Design of Behind-the-Meter Energy Storage Programs: A Customer Perspective Optimal Coordination of Distributed Energy Resources Using Deep Deterministic Policy Gradient Assessing the Energy Equity Benefits of Energy Storage Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1