A Particle Swarm Optimization Algorithm with Rich Social Cognition

Chuanhua Zeng
{"title":"A Particle Swarm Optimization Algorithm with Rich Social Cognition","authors":"Chuanhua Zeng","doi":"10.1109/ICNC.2009.69","DOIUrl":null,"url":null,"abstract":"A particle swarm optimization with rich social cognition is developed for solving the premature convergence of particle swarm optimization. In this algorithm, the optimum from the particles’ experiments is determined by learning probability and selective probability. The learning probability is adjusted to balance between the personal cognition and the social cognition. Experimental results for complex function optimization show this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"42 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A particle swarm optimization with rich social cognition is developed for solving the premature convergence of particle swarm optimization. In this algorithm, the optimum from the particles’ experiments is determined by learning probability and selective probability. The learning probability is adjusted to balance between the personal cognition and the social cognition. Experimental results for complex function optimization show this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有丰富社会认知的粒子群优化算法
针对粒子群算法的早熟收敛问题,提出了一种具有丰富社会认知的粒子群算法。该算法通过学习概率和选择概率来确定粒子实验的最优解。通过调整学习概率来平衡个人认知和社会认知。复杂函数优化的实验结果表明,该算法提高了全局收敛能力,有效地防止了算法的局部优化和早熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Minimum Abandoned Water Optimization Model of Reservoir and Its Application A New Image Denoising Method via Self-Organizing Feature Map Based on Hidden Markov Models Adaptive Genetic Algorithm and its Application to the Structural Optimization of Steel Tower A New Multistage Chaos Synchronized System for Secure Communications Application of MEC-Based Fuzzy Control in Boiler of Sludge Combustion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1