{"title":"Model for future thin-haul air mobility demand in Germany","authors":"Yona Paproth, Felix Adam, V. Stich, A. Kampker","doi":"10.1109/ICE/ITMC49519.2020.9198496","DOIUrl":null,"url":null,"abstract":"Progress in the development of small electric and hybrid aircraft promises business opportunities for thin-haul air mobility services. In order to develop demand-oriented flight plan scenarios for Germany, this paper presents a model to estimate the marked volume of thin-haul air mobility. To quantify the potential demand, our model includes the steps of trip generation, trip distribution and mode choice. Trip generation and distribution takes place between 412 geographic subdivisions of Germany and is based on calibrated traffic forecast data for the year 2030. For the first time the five relevant modes of transport, namely: car, intercity train, intercity bus, commercial aircraft and thin-haul air mobility services, have been included in one model. The step of choosing the transport mode is implemented via a generalized cost approach, taking into account travel costs and travel time. Additionally, route modeling of all transport modes is enhanced by real market data using large-scale data readouts of web interfaces. As primary result we predict a market share of 6 % or 81 million trips per year for thin-haul air mobility services. The demand concentrates on a small number of airports: 30 % of the trips are estimated to be between only 20 airports. Hubs and main routes are identified to offer the potential for scheduled air services.","PeriodicalId":269465,"journal":{"name":"2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE/ITMC49519.2020.9198496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Progress in the development of small electric and hybrid aircraft promises business opportunities for thin-haul air mobility services. In order to develop demand-oriented flight plan scenarios for Germany, this paper presents a model to estimate the marked volume of thin-haul air mobility. To quantify the potential demand, our model includes the steps of trip generation, trip distribution and mode choice. Trip generation and distribution takes place between 412 geographic subdivisions of Germany and is based on calibrated traffic forecast data for the year 2030. For the first time the five relevant modes of transport, namely: car, intercity train, intercity bus, commercial aircraft and thin-haul air mobility services, have been included in one model. The step of choosing the transport mode is implemented via a generalized cost approach, taking into account travel costs and travel time. Additionally, route modeling of all transport modes is enhanced by real market data using large-scale data readouts of web interfaces. As primary result we predict a market share of 6 % or 81 million trips per year for thin-haul air mobility services. The demand concentrates on a small number of airports: 30 % of the trips are estimated to be between only 20 airports. Hubs and main routes are identified to offer the potential for scheduled air services.