EYE SPY Face Detection and Identification using YOLO

M. Vigil, M. Barhanpurkar, NS Rahul Anand, Yash Soni, Anmol Anand
{"title":"EYE SPY Face Detection and Identification using YOLO","authors":"M. Vigil, M. Barhanpurkar, NS Rahul Anand, Yash Soni, Anmol Anand","doi":"10.1109/ICSSIT46314.2019.8987830","DOIUrl":null,"url":null,"abstract":"YOLO (You Only Look Once) is a state of the art object detection system. The object detection algorithms of YOLO is taken and is used on a custom made dataset to identify the person on camera. This method will revolutionize surveillance and security methods. This paper addresses fundamental challenges faced in making the dataset. It also compares conventional methods with YOLO. YOLO is the fastest and most accurate object detection technique. This paper also states the applications of this technology along with its advantages and various disadvantages. It uses a multi-scale training method that can run at various sizes offering an excellent relation speed and accuracy. We have based our model on yolo v2 all the while bringing our own changes for shifting from object detection to Face identification.","PeriodicalId":330309,"journal":{"name":"2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSIT46314.2019.8987830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

YOLO (You Only Look Once) is a state of the art object detection system. The object detection algorithms of YOLO is taken and is used on a custom made dataset to identify the person on camera. This method will revolutionize surveillance and security methods. This paper addresses fundamental challenges faced in making the dataset. It also compares conventional methods with YOLO. YOLO is the fastest and most accurate object detection technique. This paper also states the applications of this technology along with its advantages and various disadvantages. It uses a multi-scale training method that can run at various sizes offering an excellent relation speed and accuracy. We have based our model on yolo v2 all the while bringing our own changes for shifting from object detection to Face identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EYE SPY人脸检测与YOLO识别
YOLO (You Only Look Once)是一种最先进的物体检测系统。采用YOLO的目标检测算法,并在自定义数据集上对相机上的人进行识别。这种方法将彻底改变监视和安全方法。本文解决了在制作数据集时面临的基本挑战。它还比较了传统方法和YOLO。YOLO是最快和最准确的目标检测技术。本文还阐述了该技术的应用以及它的优点和各种缺点。它使用多尺度训练方法,可以在各种规模上运行,提供了良好的速度和准确性关系。我们的模型一直基于yolo v2,同时将我们自己的变化从物体检测转移到人脸识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving End User Experience in Software Application Using a Design Scheme for Effective Exception Handling Dynamic Virtual Machine Scheduling Approach for Minimizing the Response Time Using Distance Aware Virtual Machine Scheduler in Cloud Computing Smart Carnatic Music Note Identification (CMNI) System using Probabilistic Neural Network Dynamic Heterogeneous scheduling of GPU-CPU in Distributed Environment Review on 5G Multi-Carrier MIMO-OFDM Systems using Channel Estimation Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1