Valence-Arousal Model based Emotion Recognition using EEG, peripheral physiological signals and Facial Expression

Qi Zhu, G. Lu, Jingjie Yan
{"title":"Valence-Arousal Model based Emotion Recognition using EEG, peripheral physiological signals and Facial Expression","authors":"Qi Zhu, G. Lu, Jingjie Yan","doi":"10.1145/3380688.3380694","DOIUrl":null,"url":null,"abstract":"Emotion recognition plays a particularly important role in the field of artificial intelligence. However, the emotional recognition of electroencephalogram (EEG) in the past was only a unimodal or a bimodal based on EEG. This paper aims to use deep learning to perform emotional recognition based on the multimodal with valence-arousal dimension of EEG, peripheral physiological signals, and facial expressions. The experiment uses the complete data of 18 experimenters in the Database for Emotion Analysis Using Physiological Signals (DEAP) to classify the EEG, peripheral physiological signals and facial expression video in unimodal and multimodal fusion. The experiment demonstrates that Multimodal fusion's accuracy is excelled that in unimodal and bimodal fusion. The multimodal compensates for the defects of unimodal and bimodal information sources.","PeriodicalId":414793,"journal":{"name":"Proceedings of the 4th International Conference on Machine Learning and Soft Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3380688.3380694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Emotion recognition plays a particularly important role in the field of artificial intelligence. However, the emotional recognition of electroencephalogram (EEG) in the past was only a unimodal or a bimodal based on EEG. This paper aims to use deep learning to perform emotional recognition based on the multimodal with valence-arousal dimension of EEG, peripheral physiological signals, and facial expressions. The experiment uses the complete data of 18 experimenters in the Database for Emotion Analysis Using Physiological Signals (DEAP) to classify the EEG, peripheral physiological signals and facial expression video in unimodal and multimodal fusion. The experiment demonstrates that Multimodal fusion's accuracy is excelled that in unimodal and bimodal fusion. The multimodal compensates for the defects of unimodal and bimodal information sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EEG、外周生理信号和面部表情的效价唤醒模型的情绪识别
情感识别在人工智能领域中占有特别重要的地位。然而,以往的脑电图情感识别只是基于脑电图的单峰或双峰识别。基于脑电、外周生理信号和面部表情的多模态,利用深度学习进行情绪识别。本实验利用DEAP中18位实验者的完整数据,对EEG、外周生理信号和面部表情视频进行单模态和多模态融合分类。实验表明,多模态融合的精度优于单模态和双模态融合。多模态信息源弥补了单模态和双模态信息源的缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video-based Skeletal Feature Extraction for Hand Gesture Recognition An Effectual Sentiment Analysis for High Classification Rates Using Medical Image Processing Learning Question Similarity Diabetic Retinopathy Detection using Deep Learning A Study on the Effect of Fuzzy Membership Function on Fuzzified RIPPER for Stock Market Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1