B. Rajanarayan Prusty, S. Mohan Krishna, Kishore Bingi, Neeraj Gupta
{"title":"Risk-Based Reliability Assessment of Modern Power Systems using Machine Learning and Probability Theory","authors":"B. Rajanarayan Prusty, S. Mohan Krishna, Kishore Bingi, Neeraj Gupta","doi":"10.1109/ICAIA57370.2023.10169796","DOIUrl":null,"url":null,"abstract":"Risk-based reliability assessment is prevalent for modern power systems under higher penetration of renewable generations. This paper highlights the importance of machine learning and probabilistic approaches for risk-based reliability assessment during power system operation and planning. A set of metrics for realistic risk-based reliability assessment considering over-limit probabilities and corresponding severities is suggested. Probabilistic load flow using Monte-Carlo simulation is used to estimate the over-limit probabilities of power system variables. A detailed presentation of steps for the generation of random samples of a set of correlated random variables, development of realistic risk metrics, and portrayal of their significances via critical result analyses for different cases is expected to serve as a reference text for novice researchers in the field of risk-based reliability assessment of modern power systems integrated with photovoltaic generations.","PeriodicalId":196526,"journal":{"name":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIA57370.2023.10169796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Risk-based reliability assessment is prevalent for modern power systems under higher penetration of renewable generations. This paper highlights the importance of machine learning and probabilistic approaches for risk-based reliability assessment during power system operation and planning. A set of metrics for realistic risk-based reliability assessment considering over-limit probabilities and corresponding severities is suggested. Probabilistic load flow using Monte-Carlo simulation is used to estimate the over-limit probabilities of power system variables. A detailed presentation of steps for the generation of random samples of a set of correlated random variables, development of realistic risk metrics, and portrayal of their significances via critical result analyses for different cases is expected to serve as a reference text for novice researchers in the field of risk-based reliability assessment of modern power systems integrated with photovoltaic generations.