Machine Learning Methods for Neonatal Heart Rate Prediction using Respiratory Signals

Maharaj Faawwaz A Yusran, Tengku Siti Aisha Tengku Mohd Azzman, S. Saw, Zati Hakim Azizul Hasan
{"title":"Machine Learning Methods for Neonatal Heart Rate Prediction using Respiratory Signals","authors":"Maharaj Faawwaz A Yusran, Tengku Siti Aisha Tengku Mohd Azzman, S. Saw, Zati Hakim Azizul Hasan","doi":"10.1109/SSP53291.2023.10208073","DOIUrl":null,"url":null,"abstract":"Approximately 10% of neonates require assistance transitioning from intrauterine to extrauterine environments. Applying these interventions requires accurate monitoring of vitals such as heart and respiratory rates. However, the current methods of these vital measurements require many devices to be attached to the neonates, resulting in rather intrusive methods that could even harm the neonates if not administered properly. This pilot study investigates the possibility of applying signal processing along with automated machine learning and deep learning models to estimate heart rate from respiratory signals recorded using inductance bands. The best machine learning model can get an average MAE of 10.15 BPM, and the best deep learning model at 10.88 BPM. The advantage of applying such a method would be reducing devices attached to neonates while preserving estimation accuracy.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"441 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately 10% of neonates require assistance transitioning from intrauterine to extrauterine environments. Applying these interventions requires accurate monitoring of vitals such as heart and respiratory rates. However, the current methods of these vital measurements require many devices to be attached to the neonates, resulting in rather intrusive methods that could even harm the neonates if not administered properly. This pilot study investigates the possibility of applying signal processing along with automated machine learning and deep learning models to estimate heart rate from respiratory signals recorded using inductance bands. The best machine learning model can get an average MAE of 10.15 BPM, and the best deep learning model at 10.88 BPM. The advantage of applying such a method would be reducing devices attached to neonates while preserving estimation accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用呼吸信号预测新生儿心率的机器学习方法
大约10%的新生儿需要帮助才能从宫内环境过渡到宫外环境。应用这些干预措施需要准确监测心脏和呼吸率等生命体征。然而,目前这些重要的测量方法需要在新生儿身上安装许多设备,这导致了相当侵入性的方法,如果使用不当,甚至可能伤害新生儿。本初步研究探讨了应用信号处理以及自动机器学习和深度学习模型来估计使用电感带记录的呼吸信号的心率的可能性。最佳机器学习模型的平均MAE为10.15 BPM,最佳深度学习模型的平均MAE为10.88 BPM。应用这种方法的优点是减少新生儿身上的设备,同时保持估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1