Subgroup Analysis: Pitfalls, Promise, and Honesty

Marc Ratkovic
{"title":"Subgroup Analysis: Pitfalls, Promise, and Honesty","authors":"Marc Ratkovic","doi":"10.1017/9781108777919.020","DOIUrl":null,"url":null,"abstract":"Experiments often focus on recovering an average effect of a treatment on an outcome. A subgroup analysis involves identifying subgroups of observations for which the treatment is particularly efficacious or deleterious. Since these subgroups are not preregistered but instead discovered from the data, significant inferential issues emerge. We discuss methods for conduct honest inference on subgroups, meaning generating valid p -values and confidence intervals which ac-count for the fact that the subgroups were not specified a priori . Central to this approach is the split-sample strategy, where half the data is used to identify ef-fects and the other half to test them. After an intuitive and formal discussion of these issues, we provide simulation evidence and two examples illustrating these concepts in practice.","PeriodicalId":254604,"journal":{"name":"Advances in Experimental Political Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Experimental Political Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108777919.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Experiments often focus on recovering an average effect of a treatment on an outcome. A subgroup analysis involves identifying subgroups of observations for which the treatment is particularly efficacious or deleterious. Since these subgroups are not preregistered but instead discovered from the data, significant inferential issues emerge. We discuss methods for conduct honest inference on subgroups, meaning generating valid p -values and confidence intervals which ac-count for the fact that the subgroups were not specified a priori . Central to this approach is the split-sample strategy, where half the data is used to identify ef-fects and the other half to test them. After an intuitive and formal discussion of these issues, we provide simulation evidence and two examples illustrating these concepts in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分组分析:陷阱、承诺和诚实
实验通常侧重于恢复治疗对结果的平均效果。亚组分析包括确定治疗特别有效或有害的观察亚组。由于这些子组不是预先注册的,而是从数据中发现的,因此出现了重大的推断问题。我们讨论了在子组上进行诚实推理的方法,这意味着生成有效的p值和置信区间,这些值和置信区间说明了子组不是先验指定的事实。这种方法的核心是分离样本策略,其中一半的数据用于识别效果,另一半用于测试效果。在对这些问题进行了直观和正式的讨论之后,我们提供了仿真证据和两个实例来说明这些概念在实践中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Era of Experimental Political Science Gender Experiments in Comparative Politics Subgroup Analysis: Pitfalls, Promise, and Honesty Natural Experiments Experimental Treatments and Measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1