Fingerprint Enhancement Algorithm Based-on Gradient Magnitude for the Estimation of Orientation Fields

Saparudin Saparudin, G. Sulong
{"title":"Fingerprint Enhancement Algorithm Based-on Gradient Magnitude for the Estimation of Orientation Fields","authors":"Saparudin Saparudin, G. Sulong","doi":"10.18495/COMENGAPP.V4I2.154","DOIUrl":null,"url":null,"abstract":"An accurate estimation of fingerprint orientation fields is an important step in the fingerprint classification process. Gradient-based approaches are often used for estimating orientation fields of ridge structures but this method is susceptible to noise. Enhancement of fingerprint images improves the ridge-valley structure and increases the number of correct features thereby conducing the overall performance of the classification process. In this paper, we propose an algorithm to improve ridge orientation textures using gradient magnitude. That algorithm has four steps; firstly, normalization of fingerprint image, secondly, foreground extraction, thirdly, noise areas identification and marking using gradient coherence and finally, enhancement of grey level. We have used standard fingerprint database NIST-DB14 for testing of proposed algorithm to verify the degree of efficiency of algorithm. The experiment results suggest that our enhanced algorithm achieves visibly better noise resistance with other methods.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18495/COMENGAPP.V4I2.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An accurate estimation of fingerprint orientation fields is an important step in the fingerprint classification process. Gradient-based approaches are often used for estimating orientation fields of ridge structures but this method is susceptible to noise. Enhancement of fingerprint images improves the ridge-valley structure and increases the number of correct features thereby conducing the overall performance of the classification process. In this paper, we propose an algorithm to improve ridge orientation textures using gradient magnitude. That algorithm has four steps; firstly, normalization of fingerprint image, secondly, foreground extraction, thirdly, noise areas identification and marking using gradient coherence and finally, enhancement of grey level. We have used standard fingerprint database NIST-DB14 for testing of proposed algorithm to verify the degree of efficiency of algorithm. The experiment results suggest that our enhanced algorithm achieves visibly better noise resistance with other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于梯度幅度的指纹方向场估计增强算法
准确估计指纹方向场是指纹分类过程中的一个重要步骤。基于梯度的方法通常用于估计脊状结构的方向场,但这种方法容易受到噪声的影响。指纹图像的增强改善了脊谷结构,增加了正确特征的数量,从而提高了分类过程的整体性能。本文提出了一种利用梯度幅度来改进脊向纹理的算法。这个算法有四个步骤;首先对指纹图像进行归一化处理,其次进行前景提取,然后利用梯度相干性识别和标记噪声区域,最后进行灰度增强。我们使用标准指纹数据库NIST-DB14对算法进行了测试,验证了算法的效率程度。实验结果表明,与其他方法相比,增强算法的抗噪性能明显更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Logic-Ant Colony Optimization for Explorer-Follower Robot with Global Optimal Path Planning BLOB Analysis for Fruit Recognition and Detection Some Physical and Computational Features of Unloaded Power Transmission Lines' Switching-off Process A new method to improve feature selection with meta-heuristic algorithm and chaos theory Implementation Color Filtering and Harris Corner Method on Pattern Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1