A Framework for Scalable Data Analysis and Model Aggregation for Public Bus Systems

Mayuri A. Morais, R. Camargo
{"title":"A Framework for Scalable Data Analysis and Model Aggregation for Public Bus Systems","authors":"Mayuri A. Morais, R. Camargo","doi":"10.5753/courb.2019.7470","DOIUrl":null,"url":null,"abstract":"Urban mobility through quality public transportation is one of the major challenges for the consolidation of smart cities. Researchers developed different approaches for improving bus system reliability and information quality, including travel time prediction algorithms, network state evaluations, and bus bunching prevention strategies. The information provided by these approaches are complementary and could be aggregated for better predictions. In this work, we propose the architecture and present a prototype implementation of a framework that enables the integration of several approaches, which we call models, into scalable and efficient composite models. For instance, travel time prediction models can use estimators of bus position, network state, and bus headways to deliver more accurate and reliable predictions. We evaluate the scalability of the framework, the CPU usage of the framework components, and the predictions of the travel time models. We show that real-time predictions using this framework can be feasible in large metropolitan areas, such as Sao Paulo city.","PeriodicalId":371238,"journal":{"name":"Workshop de Computação Urbana (CoUrb)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop de Computação Urbana (CoUrb)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/courb.2019.7470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Urban mobility through quality public transportation is one of the major challenges for the consolidation of smart cities. Researchers developed different approaches for improving bus system reliability and information quality, including travel time prediction algorithms, network state evaluations, and bus bunching prevention strategies. The information provided by these approaches are complementary and could be aggregated for better predictions. In this work, we propose the architecture and present a prototype implementation of a framework that enables the integration of several approaches, which we call models, into scalable and efficient composite models. For instance, travel time prediction models can use estimators of bus position, network state, and bus headways to deliver more accurate and reliable predictions. We evaluate the scalability of the framework, the CPU usage of the framework components, and the predictions of the travel time models. We show that real-time predictions using this framework can be feasible in large metropolitan areas, such as Sao Paulo city.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公交系统可扩展数据分析与模型聚合框架
通过高质量的公共交通实现城市机动性是巩固智慧城市的主要挑战之一。研究人员开发了不同的方法来提高总线系统的可靠性和信息质量,包括行程时间预测算法、网络状态评估和总线群集预防策略。这些方法提供的信息是互补的,可以汇总起来进行更好的预测。在这项工作中,我们提出了体系结构,并提出了一个框架的原型实现,该框架能够将几种方法(我们称之为模型)集成到可扩展且高效的组合模型中。例如,旅行时间预测模型可以使用公交车位置、网络状态和公交车行驶路线的估计器来提供更准确、更可靠的预测。我们评估了框架的可伸缩性,框架组件的CPU使用情况,以及旅行时间模型的预测。我们表明,使用该框架的实时预测在圣保罗等大城市地区是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Busca de Serviços Baseada em Perfis Sociais dos Objetos em uma Rede SIoT Urbana Uma Abordagem V2X para Disseminação de Dados em Redes Veiculares Um Novo Serviço de Gerenciamento de Tráfego para ITS baseado em Computação em Névoa Detecção de eventos no Twitter através de Grafos de visibilidade natural Development of a Semantic Representation Model of Criminal Information to Support the Assessment of Risk Situations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1