Fuzzy logic and genetic algorithms for financial risk management

T. Rubinson, R. Yager
{"title":"Fuzzy logic and genetic algorithms for financial risk management","authors":"T. Rubinson, R. Yager","doi":"10.1109/CIFER.1996.501829","DOIUrl":null,"url":null,"abstract":"We discuss the applicability of fuzzy logic multi criteria ranking techniques and genetic algorithms in solving problems concerning financial risk management. Fuzzy logic techniques are useful in soliciting information on user perceptions of risk factors. However, since people are notoriously inaccurate and unreliable in reporting their preferences, we also employ a genetic algorithm to help validate user supplied data. The genetic algorithm helps clarify how and when user preferences effect the perceived desirability of a particular outcome. The genetic algorithm also helps tune the parameters of fuzzy multiple criteria decision models.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We discuss the applicability of fuzzy logic multi criteria ranking techniques and genetic algorithms in solving problems concerning financial risk management. Fuzzy logic techniques are useful in soliciting information on user perceptions of risk factors. However, since people are notoriously inaccurate and unreliable in reporting their preferences, we also employ a genetic algorithm to help validate user supplied data. The genetic algorithm helps clarify how and when user preferences effect the perceived desirability of a particular outcome. The genetic algorithm also helps tune the parameters of fuzzy multiple criteria decision models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金融风险管理中的模糊逻辑和遗传算法
讨论了模糊逻辑多准则排序技术和遗传算法在解决金融风险管理问题中的适用性。模糊逻辑技术在征求关于用户对风险因素的看法的信息方面是有用的。然而,由于人们在报告他们的偏好方面是出了名的不准确和不可靠,我们还采用了遗传算法来帮助验证用户提供的数据。遗传算法有助于澄清用户偏好如何以及何时影响对特定结果的感知可取性。遗传算法还有助于模糊多准则决策模型的参数调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of an investment in South East Asian country funds investment company Self-organizing fuzzy and MLP approaches to detecting fraudulent financial reporting Density-based clustering and radial basis function modeling to generate credit card fraud scores The gene expression messy genetic algorithm for financial applications Problems with Monte Carlo simulation in the pricing of contingent claims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1