{"title":"Regression models","authors":"Bendix Carstensen","doi":"10.1093/oso/9780198841326.003.0005","DOIUrl":null,"url":null,"abstract":"This chapter evaluates regression models, focusing on the normal linear regression model. The normal linear regression model establishes a relationship between a quantitative response (also called outcome or dependent) variable, assumed to be normally distributed, and one or more explanatory (also called regression, predictor, or independent) variables about which no distributional assumptions are made. The model is usually referred to as 'the general linear model'. The chapter then differentiates between simple linear regression and multiple regression. The term 'simple linear regression' covers the regression model where there is one response variable and one explanatory variable, assuming a linear relationship between the two. The chapter also discusses the model formulae in R; generalized linear models; collinearity and aliasing; and logarithmic transformations.","PeriodicalId":177736,"journal":{"name":"Epidemiology with R","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology with R","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841326.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter evaluates regression models, focusing on the normal linear regression model. The normal linear regression model establishes a relationship between a quantitative response (also called outcome or dependent) variable, assumed to be normally distributed, and one or more explanatory (also called regression, predictor, or independent) variables about which no distributional assumptions are made. The model is usually referred to as 'the general linear model'. The chapter then differentiates between simple linear regression and multiple regression. The term 'simple linear regression' covers the regression model where there is one response variable and one explanatory variable, assuming a linear relationship between the two. The chapter also discusses the model formulae in R; generalized linear models; collinearity and aliasing; and logarithmic transformations.