Regression models

Bendix Carstensen
{"title":"Regression models","authors":"Bendix Carstensen","doi":"10.1093/oso/9780198841326.003.0005","DOIUrl":null,"url":null,"abstract":"This chapter evaluates regression models, focusing on the normal linear regression model. The normal linear regression model establishes a relationship between a quantitative response (also called outcome or dependent) variable, assumed to be normally distributed, and one or more explanatory (also called regression, predictor, or independent) variables about which no distributional assumptions are made. The model is usually referred to as 'the general linear model'. The chapter then differentiates between simple linear regression and multiple regression. The term 'simple linear regression' covers the regression model where there is one response variable and one explanatory variable, assuming a linear relationship between the two. The chapter also discusses the model formulae in R; generalized linear models; collinearity and aliasing; and logarithmic transformations.","PeriodicalId":177736,"journal":{"name":"Epidemiology with R","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology with R","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841326.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter evaluates regression models, focusing on the normal linear regression model. The normal linear regression model establishes a relationship between a quantitative response (also called outcome or dependent) variable, assumed to be normally distributed, and one or more explanatory (also called regression, predictor, or independent) variables about which no distributional assumptions are made. The model is usually referred to as 'the general linear model'. The chapter then differentiates between simple linear regression and multiple regression. The term 'simple linear regression' covers the regression model where there is one response variable and one explanatory variable, assuming a linear relationship between the two. The chapter also discusses the model formulae in R; generalized linear models; collinearity and aliasing; and logarithmic transformations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回归模型
本章对回归模型进行了评价,重点介绍了正态线性回归模型。正态线性回归模型建立了假设为正态分布的定量反应(也称为结果或因变量)变量与一个或多个解释(也称为回归,预测或独立)变量之间的关系,这些变量没有对分布进行假设。该模型通常被称为“一般线性模型”。然后,本章区分了简单线性回归和多元回归。术语“简单线性回归”涵盖了有一个响应变量和一个解释变量的回归模型,假设两者之间存在线性关系。本章还讨论了R中的模型公式;广义线性模型;共线性和混叠;还有对数变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Survival analysis Case-control and case-cohort studies Do not group quantitative variables Regression models Using R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1