Flexible group-level pruning of deep neural networks for fast inference on mobile CPUs: work-in-progress

Kwangbae Lee, Hoseung Kim, Hayun Lee, Dongkun Shin
{"title":"Flexible group-level pruning of deep neural networks for fast inference on mobile CPUs: work-in-progress","authors":"Kwangbae Lee, Hoseung Kim, Hayun Lee, Dongkun Shin","doi":"10.1145/3349569.3351537","DOIUrl":null,"url":null,"abstract":"Network pruning is a promising compression technique to reduce computation and memory access cost of deep neural networks. In this paper, we propose a novel group-level pruning method to accelerate deep neural networks on mobile GPUs, where several adjacent weights are pruned in a group while providing high accuracy. Although several group-level pruning techniques have been proposed, the previous techniques can not achieve the desired accuracy at high sparsity. In this paper, we propose a unaligned approach to improve the accuracy of compressed model.","PeriodicalId":306252,"journal":{"name":"Proceedings of the International Conference on Compliers, Architectures and Synthesis for Embedded Systems Companion","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Compliers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349569.3351537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Network pruning is a promising compression technique to reduce computation and memory access cost of deep neural networks. In this paper, we propose a novel group-level pruning method to accelerate deep neural networks on mobile GPUs, where several adjacent weights are pruned in a group while providing high accuracy. Although several group-level pruning techniques have been proposed, the previous techniques can not achieve the desired accuracy at high sparsity. In this paper, we propose a unaligned approach to improve the accuracy of compressed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动cpu上用于快速推理的深度神经网络的灵活组级修剪:正在研究中
网络修剪是一种很有前途的压缩技术,可以减少深度神经网络的计算量和内存访问成本。在本文中,我们提出了一种新的组级修剪方法来加速移动gpu上的深度神经网络,该方法在提供高精度的同时在一组中修剪多个相邻的权值。虽然已经提出了几种组级剪枝技术,但以往的技术在高稀疏度下无法达到预期的精度。在本文中,我们提出了一种不对齐的方法来提高压缩模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fine-grained acceleration using runtime integrated custom execution (RICE): work-in-progress ECC management with rate compatible LDPC code for NAND flash storage: work-in-progress Porting new versatile video coding transforms to a heterogeneous GPU-based technology: work-in-progress Automatic generation of application-specific FPGA overlays: work-in-progress Sequence-crafter: side-channel entropy minimization to thwart timing-based side-channel attacks: work-in-progress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1