A Robust Algorithm for Classification Using Decision Trees

B. Chandra, P. Paul V
{"title":"A Robust Algorithm for Classification Using Decision Trees","authors":"B. Chandra, P. Paul V","doi":"10.1109/ICCIS.2006.252336","DOIUrl":null,"url":null,"abstract":"Decision trees algorithms have been suggested in the past for classification of numeric as well as categorical attributes. SLIQ algorithm was proposed (Mehta et al., 1996) as an improvement over ID3 and C4.5 algorithms (Quinlan, 1993). Elegant Decision Tree Algorithm was proposed (Chandra et al. 2002) to improve the performance of SLIQ. In this paper a novel approach has been presented for the choice of split value of attributes. The issue of reducing the number of split points has been addressed. It has been shown on various datasets taken from UCI machine learning data repository that this approach gives better classification accuracy as compared to C4.5, SLIQ and Elegant Decision Tree Algorithm (EDTA) and at the same time the number of split points to be evaluated is much less compared to that of SLIQ and EDTA","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Decision trees algorithms have been suggested in the past for classification of numeric as well as categorical attributes. SLIQ algorithm was proposed (Mehta et al., 1996) as an improvement over ID3 and C4.5 algorithms (Quinlan, 1993). Elegant Decision Tree Algorithm was proposed (Chandra et al. 2002) to improve the performance of SLIQ. In this paper a novel approach has been presented for the choice of split value of attributes. The issue of reducing the number of split points has been addressed. It has been shown on various datasets taken from UCI machine learning data repository that this approach gives better classification accuracy as compared to C4.5, SLIQ and Elegant Decision Tree Algorithm (EDTA) and at the same time the number of split points to be evaluated is much less compared to that of SLIQ and EDTA
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于决策树的鲁棒分类算法
决策树算法在过去被建议用于数字和分类属性的分类。作为对ID3和C4.5算法的改进(Quinlan, 1993),提出了SLIQ算法(Mehta et al., 1996)。为了提高SLIQ的性能,提出了优雅决策树算法(Chandra et al. 2002)。本文提出了一种新的属性分割值选择方法。减少分界点数目的问题已得到解决。从UCI机器学习数据库中获取的各种数据集表明,与C4.5、SLIQ和优雅决策树算法(EDTA)相比,这种方法具有更好的分类精度,同时与SLIQ和EDTA相比,需要评估的分裂点数量要少得多
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1