Zero-Shot Information Extraction to Enhance a Knowledge Graph Describing Silk Textiles

Thomas Schleider, Raphael Troncy
{"title":"Zero-Shot Information Extraction to Enhance a Knowledge Graph Describing Silk Textiles","authors":"Thomas Schleider, Raphael Troncy","doi":"10.18653/v1/2021.latechclfl-1.16","DOIUrl":null,"url":null,"abstract":"The knowledge of the European silk textile production is a typical case for which the information collected is heterogeneous, spread across many museums and sparse since rarely complete. Knowledge Graphs for this cultural heritage domain, when being developed with appropriate ontologies and vocabularies, enable to integrate and reconcile this diverse information. However, many of these original museum records still have some metadata gaps. In this paper, we present a zero-shot learning approach that leverages the ConceptNet common sense knowledge graph to predict categorical metadata informing about the silk objects production. We compared the performance of our approach with traditional supervised deep learning-based methods that do require training data. We demonstrate promising and competitive performance for similar datasets and circumstances and the ability to predict sometimes more fine-grained information. Our results can be reproduced using the code and datasets published at https://github.com/silknow/ZSL-KG-silk.","PeriodicalId":441300,"journal":{"name":"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature","volume":"30 13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.latechclfl-1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The knowledge of the European silk textile production is a typical case for which the information collected is heterogeneous, spread across many museums and sparse since rarely complete. Knowledge Graphs for this cultural heritage domain, when being developed with appropriate ontologies and vocabularies, enable to integrate and reconcile this diverse information. However, many of these original museum records still have some metadata gaps. In this paper, we present a zero-shot learning approach that leverages the ConceptNet common sense knowledge graph to predict categorical metadata informing about the silk objects production. We compared the performance of our approach with traditional supervised deep learning-based methods that do require training data. We demonstrate promising and competitive performance for similar datasets and circumstances and the ability to predict sometimes more fine-grained information. Our results can be reproduced using the code and datasets published at https://github.com/silknow/ZSL-KG-silk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
零点信息提取增强真丝织物知识图谱
关于欧洲丝绸纺织品生产的知识是一个典型的案例,收集的信息是异质的,分布在许多博物馆,而且很少完整。在使用适当的本体和词汇表开发该文化遗产领域的知识图时,可以集成和协调这些不同的信息。然而,许多这些原始的博物馆记录仍然存在一些元数据缺口。在本文中,我们提出了一种零采样学习方法,该方法利用ConceptNet常识知识图来预测关于丝绸对象生产的分类元数据。我们将我们的方法与传统的基于监督的深度学习方法的性能进行了比较,后者确实需要训练数据。对于类似的数据集和环境,我们展示了有希望的和有竞争力的性能,以及预测有时更细粒度信息的能力。我们的结果可以使用在https://github.com/silknow/ZSL-KG-silk上发布的代码和数据集进行复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FrameNet-like Annotation of Olfactory Information in Texts The Early Modern Dutch Mediascape. Detecting Media Mentions in Chronicles Using Word Embeddings and CRF Period Classification in Chinese Historical Texts A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek The Multilingual Corpus of Survey Questionnaires Query Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1