Reliable Communication Performance for Energy Harvesting Wireless Sensor Networks

Van Nhan Vo, Hung Tran, E. Uhlemann, Q. Truong, C. So-In, A. Balador
{"title":"Reliable Communication Performance for Energy Harvesting Wireless Sensor Networks","authors":"Van Nhan Vo, Hung Tran, E. Uhlemann, Q. Truong, C. So-In, A. Balador","doi":"10.1109/VTCSpring.2019.8746317","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of how to provide reliable communications for energy harvesting (EH) wireless sensor network (WSN). Using the example of an autonomous quarry, where self-driving trucks autonomously collect and transport goods, there is a need for multiple wireless sensors collecting data about where and when goods can be collected, while guaranteeing reliable operation of the quarry. The vehicles transfer energy to the wireless sensors within range, forming a cluster. The sensors use this energy to transmit data to the vehicles. Finally, the vehicles relay information to an access point (AP). The AP processes the collected information and synchronize the operation of all vehicles. We propose an interference channel selection policy for the sensors-to-vehicles links and vehiclesto- AP links to improve the reliability of the communications, while enhancing the energy utilization. Accordingly, closed-form expression on how to achieve reliable communication within the considered system is derived and numerical results show that the proposed channel selection strategy not only improves the probability of achieving sufficiently reliable communication but also enhances the energy utilization.","PeriodicalId":134773,"journal":{"name":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCSpring.2019.8746317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we study the problem of how to provide reliable communications for energy harvesting (EH) wireless sensor network (WSN). Using the example of an autonomous quarry, where self-driving trucks autonomously collect and transport goods, there is a need for multiple wireless sensors collecting data about where and when goods can be collected, while guaranteeing reliable operation of the quarry. The vehicles transfer energy to the wireless sensors within range, forming a cluster. The sensors use this energy to transmit data to the vehicles. Finally, the vehicles relay information to an access point (AP). The AP processes the collected information and synchronize the operation of all vehicles. We propose an interference channel selection policy for the sensors-to-vehicles links and vehiclesto- AP links to improve the reliability of the communications, while enhancing the energy utilization. Accordingly, closed-form expression on how to achieve reliable communication within the considered system is derived and numerical results show that the proposed channel selection strategy not only improves the probability of achieving sufficiently reliable communication but also enhances the energy utilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量收集无线传感器网络的可靠通信性能
本文研究了能量采集(EH)无线传感器网络(WSN)的可靠通信问题。以自动采石场为例,自动驾驶卡车自动收集和运输货物,需要多个无线传感器收集有关货物收集地点和时间的数据,同时保证采石场的可靠运行。车辆将能量传递给范围内的无线传感器,形成一个集群。传感器利用这种能量向车辆传输数据。最后,车辆将信息传递给接入点(AP)。AP对收集到的信息进行处理,并同步所有车辆的运行。提出了传感器到车辆链路和车辆到AP链路的干扰信道选择策略,以提高通信的可靠性,同时提高能源利用率。在此基础上,推导了如何在考虑的系统内实现可靠通信的封闭表达式,数值结果表明,所提出的信道选择策略不仅提高了实现足够可靠通信的概率,而且提高了能量利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Multiplexing of Broadband Traffic and Grant-Free Ultra-Reliable Communication in Uplink On the Crucial Impact of Antennas and Diversity on BLE RSSI-Based Indoor Localization Multi-Connectivity for Ultra-Reliable Communication in Industrial Scenarios User Tracking for Access Control with Bluetooth Low Energy Incremental Hopping-Window Pose-Graph Fusion for Real-Time Vehicle Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1