{"title":"Incremental Hopping-Window Pose-Graph Fusion for Real-Time Vehicle Localization","authors":"Anwesha Das, Gijs Dubbelman","doi":"10.1109/VTCSpring.2019.8746464","DOIUrl":null,"url":null,"abstract":"In this work, we research and evaluate incremental hopping-window pose-graph fusion strategies for vehicle localization. Pose-graphs can model multiple absolute and relative vehicle localization sensors, and can be optimized using non-linear techniques. We focus on the performance of incremental hopping-window optimization for on- line usage in vehicles and compare it with global off-line optimization. Our evaluation is based on 180 Km long vehicle trajectories that are recorded in highway, urban, and rural areas, and that are accompanied with post-processed Real Time Kinematic GNSS as ground truth. The results exhibit a 17% reduction in the error's standard deviation and a significant reduction in GNSS outliers when compared with automotive-grade GNSS receivers. The incremental hopping-window pose- graph optimization bounds the computation cost, when compared to global pose-graph fusion, which increases linearly with the size of the pose- graph, whereas the difference in accuracy is only 1%. This allows real-time usage of non-linear pose-graph fusion for vehicle localization.","PeriodicalId":134773,"journal":{"name":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCSpring.2019.8746464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, we research and evaluate incremental hopping-window pose-graph fusion strategies for vehicle localization. Pose-graphs can model multiple absolute and relative vehicle localization sensors, and can be optimized using non-linear techniques. We focus on the performance of incremental hopping-window optimization for on- line usage in vehicles and compare it with global off-line optimization. Our evaluation is based on 180 Km long vehicle trajectories that are recorded in highway, urban, and rural areas, and that are accompanied with post-processed Real Time Kinematic GNSS as ground truth. The results exhibit a 17% reduction in the error's standard deviation and a significant reduction in GNSS outliers when compared with automotive-grade GNSS receivers. The incremental hopping-window pose- graph optimization bounds the computation cost, when compared to global pose-graph fusion, which increases linearly with the size of the pose- graph, whereas the difference in accuracy is only 1%. This allows real-time usage of non-linear pose-graph fusion for vehicle localization.