Digital cartography of soil classes with fuzzy logic in mountain areas

Ángel R. Valera, M. C. Pineda, J. Viloria
{"title":"Digital cartography of soil classes with fuzzy logic in mountain areas","authors":"Ángel R. Valera, M. C. Pineda, J. Viloria","doi":"10.24294/jgc.v5i2.1674","DOIUrl":null,"url":null,"abstract":"In order to strengthen the study of soil-landscape relationships in mountain areas, a digital soil mapping approach based on fuzzy set theory was applied. Initially, soil properties were estimated with the regression kriging (RK) method, combining soil data and auxiliary information derived from a digital elevation model (DEM) and satellite images. Subsequently, the grouping of soil properties in raster format was performed with the fuzzy c-means (FCM) algorithm, whose final product resulted in a fuzzy soil class variation model at a semi-detailed scale. The validation of the model showed an overall reliability of 88% and a Kappa index of 84%, which shows the usefulness of fuzzy clustering in the evaluation of soil-landscape relationships and in the correlation with soil taxonomic categories.","PeriodicalId":363659,"journal":{"name":"Journal of Geography and Cartography","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geography and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/jgc.v5i2.1674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to strengthen the study of soil-landscape relationships in mountain areas, a digital soil mapping approach based on fuzzy set theory was applied. Initially, soil properties were estimated with the regression kriging (RK) method, combining soil data and auxiliary information derived from a digital elevation model (DEM) and satellite images. Subsequently, the grouping of soil properties in raster format was performed with the fuzzy c-means (FCM) algorithm, whose final product resulted in a fuzzy soil class variation model at a semi-detailed scale. The validation of the model showed an overall reliability of 88% and a Kappa index of 84%, which shows the usefulness of fuzzy clustering in the evaluation of soil-landscape relationships and in the correlation with soil taxonomic categories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑的山区土壤分类数字制图
为了加强山区土壤-景观关系的研究,提出了一种基于模糊集理论的数字土壤制图方法。首先,将土壤数据与数字高程模型(DEM)和卫星图像的辅助信息相结合,采用回归克里金(RK)方法估算土壤性质。随后,使用模糊c均值(FCM)算法对栅格格式的土壤属性进行分组,最终得到半精细尺度的模糊土壤类别变化模型。结果表明,该模型的总体信度为88%,Kappa指数为84%,表明模糊聚类在评价土壤-景观关系以及与土壤分类类别的相关性方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating in-situ hydraulic conductivity measurements and vertical electrical sounding for groundwater exploration in fractured shales within Alex Ekwueme Federal University Ndufu Alike (AE-FUNAI), South Eastern Nigeria Cartographical digital products: Maps, 3D models, diagrams An integrated urban water resources management approach for infrastructure and urban planning On the elemental contents of aspen (Populus tremula L.) leaves grown in the mineralization area Comparative study of sediment loading in sub-watersheds of Phewa Lake, Nepal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1