{"title":"Nonparametric M-estimation for right censored regression model with stationary ergodic data","authors":"Mohamed Chaouch , Naâmane Laïb , Elias Ould Saïd","doi":"10.1016/j.stamet.2016.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper deals with a nonparametric <span><math><mi>M</mi></math></span><span><span>-estimation for right censored regression model with stationary ergodic data. Defined as an implicit function, a kernel-type estimator of a family of robust regression is considered when the </span>covariate takes its values in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (<span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>) and the data are sampled from a <em>stationary ergodic process</em><span>. The strong consistency (with rate) and the asymptotic distribution of the estimator are established under mild assumptions. Moreover, a usable confidence interval is provided which does not depend on any unknown quantity. Our results hold without any mixing condition and do not require the existence of marginal densities. A comparison study based on simulated data is also provided.</span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"33 ","pages":"Pages 234-255"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.10.002","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157231271630034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
Abstract
The present paper deals with a nonparametric -estimation for right censored regression model with stationary ergodic data. Defined as an implicit function, a kernel-type estimator of a family of robust regression is considered when the covariate takes its values in () and the data are sampled from a stationary ergodic process. The strong consistency (with rate) and the asymptotic distribution of the estimator are established under mild assumptions. Moreover, a usable confidence interval is provided which does not depend on any unknown quantity. Our results hold without any mixing condition and do not require the existence of marginal densities. A comparison study based on simulated data is also provided.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.