Neural Network-Based Compression Framework for DOA Estimation Exploiting Distributed Array

S. Pavel, Yimin D. Zhang
{"title":"Neural Network-Based Compression Framework for DOA Estimation Exploiting Distributed Array","authors":"S. Pavel, Yimin D. Zhang","doi":"10.1109/icassp43922.2022.9746724","DOIUrl":null,"url":null,"abstract":"Distributed array consisting of multiple subarrays is attractive for high-resolution direction-of-arrival (DOA) estimation when a large-scale array is infeasible. To achieve effective distributed DOA estimation, it is required to transmit information observed at the subarrays to the fusion center, where DOA estimation is performed. For noncoherent data fusion, the covariance matrices are used for subarray fusion. To address the complexity involved with the large array size, we propose a compression framework consisting of multiple parallel encoders and a classifier. The parallel encoders at the distributed subarrays are trained to compress the respective covariance matrices. The compressed results are sent to the fusion center where the signal DOAs are estimated using a classifier based on the compressed covariance matrices.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Distributed array consisting of multiple subarrays is attractive for high-resolution direction-of-arrival (DOA) estimation when a large-scale array is infeasible. To achieve effective distributed DOA estimation, it is required to transmit information observed at the subarrays to the fusion center, where DOA estimation is performed. For noncoherent data fusion, the covariance matrices are used for subarray fusion. To address the complexity involved with the large array size, we propose a compression framework consisting of multiple parallel encoders and a classifier. The parallel encoders at the distributed subarrays are trained to compress the respective covariance matrices. The compressed results are sent to the fusion center where the signal DOAs are estimated using a classifier based on the compressed covariance matrices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的分布式阵列DOA估计压缩框架
当大规模阵列无法实现时,由多个子阵列组成的分布式阵列对高分辨率到达方向估计具有吸引力。为了实现有效的分布式DOA估计,需要将子阵列观测到的信息传输到融合中心进行DOA估计。对于非相干数据融合,采用协方差矩阵进行子阵列融合。为了解决大数组大小所涉及的复杂性,我们提出了一个由多个并行编码器和一个分类器组成的压缩框架。训练分布式子阵列上的并行编码器压缩各自的协方差矩阵。压缩后的结果被发送到融合中心,在融合中心使用基于压缩协方差矩阵的分类器估计信号的doa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1