Hardware Accelerations for Container Engine to Assist Container Migration on Client Devices

Shreyansh Chhajer, Akhilesh S. Thyagaturu, Anil Yatavelli, P. Lalwaney, M. Reisslein, Kannan G. Raja
{"title":"Hardware Accelerations for Container Engine to Assist Container Migration on Client Devices","authors":"Shreyansh Chhajer, Akhilesh S. Thyagaturu, Anil Yatavelli, P. Lalwaney, M. Reisslein, Kannan G. Raja","doi":"10.1109/LANMAN49260.2020.9153273","DOIUrl":null,"url":null,"abstract":"The increasing computing capabilities of client devices and the increasing demands for ultra-low latency services make it prudent to migrate some micro-service container computations from the cloud and multi-access edge computing (MEC) to the client devices. The migration of a container image requires compression and decompression, which are computationally demanding. We quantitatively examine the hardware acceleration of container image compression and decompression on a client device. Specifically, we compare the Intel® Quick Assist Technology (QAT) hardware acceleration with software compression/decompression. We find that QAT speeds up compression by a factor of over 7 compared to the single-core GZIP software, while QAT speeds up decompression by a factor of over 1.6 compared to the multi-core PIGZ software. QAT also reduces the CPU core utilization by over 15% for large container images. These QAT benefits come at the expense of Input/Output (IO) memory access bitrates of up to 900 Mbyte/s (while the software compression/decompression does not require IO memory access). The presented evaluation results provide reference benchmark performance characteristics of the achievable latencies for container image instantiation and migration with and without hardware acceleration of the compression and decompression of container images.","PeriodicalId":431494,"journal":{"name":"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LANMAN49260.2020.9153273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increasing computing capabilities of client devices and the increasing demands for ultra-low latency services make it prudent to migrate some micro-service container computations from the cloud and multi-access edge computing (MEC) to the client devices. The migration of a container image requires compression and decompression, which are computationally demanding. We quantitatively examine the hardware acceleration of container image compression and decompression on a client device. Specifically, we compare the Intel® Quick Assist Technology (QAT) hardware acceleration with software compression/decompression. We find that QAT speeds up compression by a factor of over 7 compared to the single-core GZIP software, while QAT speeds up decompression by a factor of over 1.6 compared to the multi-core PIGZ software. QAT also reduces the CPU core utilization by over 15% for large container images. These QAT benefits come at the expense of Input/Output (IO) memory access bitrates of up to 900 Mbyte/s (while the software compression/decompression does not require IO memory access). The presented evaluation results provide reference benchmark performance characteristics of the achievable latencies for container image instantiation and migration with and without hardware acceleration of the compression and decompression of container images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
容器引擎的硬件加速,以协助客户端设备上的容器迁移
随着客户端设备计算能力的不断增强和对超低延迟服务需求的不断增长,将一些微服务容器计算从云和多访问边缘计算(MEC)迁移到客户端设备是明智的。容器映像的迁移需要压缩和解压缩,这对计算量要求很高。我们定量地检查了客户端设备上容器图像压缩和解压缩的硬件加速。具体来说,我们比较了英特尔®快速辅助技术(QAT)硬件加速与软件压缩/解压缩。我们发现,与单核GZIP软件相比,QAT将压缩速度提高了7倍以上,而与多核PIGZ软件相比,QAT将解压速度提高了1.6倍以上。对于大型容器映像,QAT还将CPU内核利用率降低了15%以上。这些QAT的好处是以高达900 Mbyte/s的输入/输出(IO)内存访问比特率为代价的(而软件压缩/解压缩不需要IO内存访问)。所提出的评估结果为容器映像实例化和迁移的可实现延迟提供了参考基准性能特征,无论是否对容器映像进行压缩和解压缩的硬件加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing State for Failure Resiliency in Network Function Virtualization Generating IoT traffic: A Case Study on Anomaly Detection Understanding Container Network Interface Plugins: Design Considerations and Performance Eco-friendly Caching and Forwarding in Named Data Networking BBRvl vs BBRv2: Examining Performance Differences through Experimental Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1