{"title":"Finite element modeling of printed circuit board for structural analysis","authors":"M. Lee","doi":"10.1109/PEP.1997.656471","DOIUrl":null,"url":null,"abstract":"Printed circuit boards with unfavourable deflection have been considered for better mechanical design. During the reflow process, the PCB has experienced a temperature range between ambient temperature and peak furnace temperature. Out of plane deflection is generated due to the thermal properties mismatch of the material composition. The combination of board materials and copper plating is researched for investigation of the cause of the trouble and for design improvements. The effects of soldering and mounted component weight are ignored due to the input data complexity. A set of real PCBs has been exposed in a reflow process and deflection data is collected for comparison. As part of the analysis procedure, a finite element model for board deflection was proposed.","PeriodicalId":340973,"journal":{"name":"Proceedings. The First IEEE International Symposium on Polymeric Electronics Packaging, PEP '97 (Cat. No.97TH8268)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The First IEEE International Symposium on Polymeric Electronics Packaging, PEP '97 (Cat. No.97TH8268)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEP.1997.656471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Printed circuit boards with unfavourable deflection have been considered for better mechanical design. During the reflow process, the PCB has experienced a temperature range between ambient temperature and peak furnace temperature. Out of plane deflection is generated due to the thermal properties mismatch of the material composition. The combination of board materials and copper plating is researched for investigation of the cause of the trouble and for design improvements. The effects of soldering and mounted component weight are ignored due to the input data complexity. A set of real PCBs has been exposed in a reflow process and deflection data is collected for comparison. As part of the analysis procedure, a finite element model for board deflection was proposed.