Robust hidden semi-Markov modeling of array CGH data

Jiarui Ding, Sohrab P. Shah
{"title":"Robust hidden semi-Markov modeling of array CGH data","authors":"Jiarui Ding, Sohrab P. Shah","doi":"10.1109/BIBM.2010.5706637","DOIUrl":null,"url":null,"abstract":"As an extension to hidden Markov models, the hidden semi-Markov models allow the probability distribution of staying in the same state to be a general distribution. Therefore, hidden semi-Markov models are good at modeling sequences with succession of homogenous zones by choosing appropriate state duration distributions. Hidden semi-Markov models are generative models. Most times they are trained by maximum likelihood estimation. To compensate model mis-specification and provide protection against outliers, hidden semi-Markov models can be trained discriminatively given a labeled training set at the expense of increased training complexity. As an alternative to discriminative training, in this paper, we consider model mis-specification and outliers by adopting robust methods. Specifically, we use Student's t mixture models as the emission distributions of hidden semi-Markov models. The proposed robust hidden semi-Markov models are used to model array based comparative genomic hybridization data. Experiments conducted on the benchmark data from the Coriell cell lines, and the glioblastoma multiforme data illustrate the reliability of the technique.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As an extension to hidden Markov models, the hidden semi-Markov models allow the probability distribution of staying in the same state to be a general distribution. Therefore, hidden semi-Markov models are good at modeling sequences with succession of homogenous zones by choosing appropriate state duration distributions. Hidden semi-Markov models are generative models. Most times they are trained by maximum likelihood estimation. To compensate model mis-specification and provide protection against outliers, hidden semi-Markov models can be trained discriminatively given a labeled training set at the expense of increased training complexity. As an alternative to discriminative training, in this paper, we consider model mis-specification and outliers by adopting robust methods. Specifically, we use Student's t mixture models as the emission distributions of hidden semi-Markov models. The proposed robust hidden semi-Markov models are used to model array based comparative genomic hybridization data. Experiments conducted on the benchmark data from the Coriell cell lines, and the glioblastoma multiforme data illustrate the reliability of the technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阵列CGH数据的鲁棒隐半马尔可夫建模
作为隐马尔可夫模型的扩展,隐半马尔可夫模型允许保持同一状态的概率分布为一般分布。因此,隐半马尔可夫模型通过选择合适的状态持续时间分布,可以很好地对具有连续齐次带的序列进行建模。隐半马尔可夫模型是生成模型。大多数情况下,它们是通过最大似然估计来训练的。为了补偿模型的错误规范并提供对异常值的保护,隐式半马尔可夫模型可以在给定标记训练集的情况下进行判别训练,但代价是增加训练复杂性。作为判别训练的一种替代方法,本文采用鲁棒性方法考虑了模型不规范和异常值。具体来说,我们使用Student’st混合模型作为隐藏半马尔可夫模型的发射分布。利用所提出的鲁棒隐半马尔可夫模型对基于阵列的比较基因组杂交数据进行建模。以科里尔细胞系的基准数据和胶质母细胞瘤多形性数据进行的实验说明了该技术的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1